Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jan-Feb;2(1):99-112. doi: 10.1002/wnan.66.
Decreased toxicity via selective delivery of cancer therapeutics to tumors has become a hallmark achievement of nanotechnology. In order to be optimally efficacious, a systemically administered nanomedicine must reach cancer cells in sufficient quantities to elicit a response and assume its active form within the tumor microenvironment (e.g., be taken up by cancer cells and release a toxic component once within the cytosol or nuclei). Most nanomedicines achieve selective tumor accumulation via the enhanced permeability and retention (EPR) effect or a combination of the EPR effect and active targeting to cellular receptors. Here, we review how the fundamental physicochemical properties of a nanomedicine (its size, charge, hydrophobicity, etc.) can dramatically affect its distribution to cancerous tissue, transport across vascular walls, and retention in tumors. We also discuss how nanoparticle characteristics such as stability in the blood and tumor, cleavability of covalently bound components, cancer cell uptake, and cytotoxicity contribute to efficacy once the nanoparticle has reached the tumor's interstitial space. We elaborate on how tumor vascularization and receptor expression vary depending on cancer type, stage of disease, site of implantation, and host species, and review studies which have demonstrated that these variations affect tumor response to nanomedicines. Finally, we show how knowledge of these properties (both of the nanoparticle and the cancer/tumor under study) can be used to design meaningful in vivo tests to evaluate nanoparticle efficacy.
通过将癌症治疗药物选择性递送到肿瘤中,降低毒性已成为纳米技术的一个显著成就。为了达到最佳疗效,系统给予的纳米医学必须到达足够数量的癌细胞以引起反应,并在肿瘤微环境中发挥其活性形式(例如,被癌细胞摄取,并在细胞质或核内释放有毒成分)。大多数纳米医学通过增强的通透性和保留(EPR)效应或 EPR 效应与主动靶向细胞受体的结合来实现选择性肿瘤积累。在这里,我们回顾了纳米医学的基本物理化学性质(其大小、电荷、疏水性等)如何极大地影响其分布到癌组织、穿过血管壁的运输以及在肿瘤中的保留。我们还讨论了纳米粒子的特性,如在血液和肿瘤中的稳定性、共价结合成分的可切割性、癌细胞摄取和细胞毒性,这些特性在纳米粒子到达肿瘤间质空间后对疗效的贡献。我们详细介绍了肿瘤血管生成和受体表达如何根据癌症类型、疾病阶段、植入部位和宿主物种而变化,并回顾了表明这些变化会影响肿瘤对纳米医学的反应的研究。最后,我们展示了如何利用这些特性(包括纳米粒子和正在研究的癌症/肿瘤)的知识来设计有意义的体内测试来评估纳米粒子的疗效。