Suppr超能文献

基于单通道 EEG 中脚部运动想象检测的快速设置异步脑切换。

Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG.

机构信息

Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Krenngasse 37, 8010, Graz, Austria.

出版信息

Med Biol Eng Comput. 2010 Mar;48(3):229-33. doi: 10.1007/s11517-009-0572-7. Epub 2010 Jan 6.

Abstract

Bringing a Brain-Computer Interface (BCI) out of the lab one of the main problems has to be solved: to shorten the training time. Finding a solution for this problem, the use of a BCI will be open not only for people who have no choice, e.g., persons in a locked-in state, or suffering from a degenerating nerve disease. By reducing the training time to a minimum, also healthy persons will make use of the system, e.g., for using this kind of control for games. For realizing such a control, the post-movement beta rebound occurring after brisk feet movement was used to set up a classifier. This classifier was then used in a cue-based motor imagery system. After classifier adaptation, a self-paced brain-switch based on brisk foot motor imagery (MI) was evaluated. Four out of six subjects showed that a post-movement beta rebound after feet MI and succeeded with a true positive rate between 69 and 89%, while the positive predictive value was between 75 and 93%.

摘要

将脑机接口 (BCI) 从实验室中带出来,其中一个主要问题必须得到解决:缩短训练时间。为了解决这个问题,BCI 将不仅对那些别无选择的人开放,例如闭锁综合征患者或患有神经退行性疾病的人。通过将训练时间减少到最低限度,健康人也将使用该系统,例如,将这种控制用于游戏。为了实现这种控制,使用了快速脚部运动后的运动后β反弹来建立分类器。然后,该分类器被用于基于提示的运动想象系统中。在分类器适应后,评估了基于快速脚部运动想象 (MI) 的自我调节脑开关。6 名受试者中有 4 名显示出脚部 MI 后的运动后β反弹,并以 69%至 89%的真阳性率成功,而阳性预测值在 75%至 93%之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验