Center of Excellence in Biomedical Research on Advanced Integrated-on-Chips Neurotechnologies (CenBRAIN Neurotech), School of Engineering, Westlake University, Hangzhou 310024, China.
Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China.
Biosensors (Basel). 2022 Jun 2;12(6):384. doi: 10.3390/bios12060384.
To apply EEG-based brain-machine interfaces during rehabilitation, separating various tasks during motor imagery (MI) and assimilating MI into motor execution (ME) are needed. Previous studies were focusing on classifying different MI tasks based on complex algorithms. In this paper, we implement intelligent, straightforward, comprehensible, time-efficient, and channel-reduced methods to classify ME versus MI and left- versus right-hand MI. EEG of 30 healthy participants undertaking motional tasks is recorded to investigate two classification tasks. For the first task, we first propose a "follow-up" pattern based on the beta rebound. This method achieves an average classification accuracy of 59.77% ± 11.95% and can be up to 89.47% for finger-crossing. Aside from time-domain information, we map EEG signals to feature space using extraction methods including statistics, wavelet coefficients, average power, sample entropy, and common spatial patterns. To evaluate their practicability, we adopt a support vector machine as an intelligent classifier model and sparse logistic regression as a feature selection technique and achieve 79.51% accuracy. Similar approaches are taken for the second classification reaching 75.22% accuracy. The classifiers we propose show high accuracy and intelligence. The achieved results make our approach highly suitable to be applied to the rehabilitation of paralyzed limbs.
为了在康复期间应用基于脑电图的脑机接口,需要在运动想象(MI)期间分离各种任务,并将 MI 融入运动执行(ME)中。以前的研究主要集中在基于复杂算法对不同 MI 任务进行分类上。在本文中,我们实现了智能、简单、易懂、高效和通道减少的方法,用于对 ME 与 MI 以及左手与右手 MI 进行分类。记录了 30 名健康参与者进行运动任务的脑电图,以研究两个分类任务。对于第一个任务,我们首先提出了一种基于β波反弹的“跟踪”模式。该方法的平均分类准确率为 59.77%±11.95%,对于手指交叉,准确率可达 89.47%。除了时域信息外,我们还使用包括统计、小波系数、平均功率、样本熵和共空间模式在内的提取方法将 EEG 信号映射到特征空间。为了评估它们的实用性,我们采用支持向量机作为智能分类器模型和稀疏逻辑回归作为特征选择技术,准确率达到 79.51%。对于第二个分类任务,我们采用类似的方法,准确率达到 75.22%。我们提出的分类器表现出了很高的准确性和智能性。所取得的结果使我们的方法非常适合应用于瘫痪肢体的康复。