Department of Chemistry, The University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35487-0336, USA.
Inorg Chem. 2010 Feb 1;49(3):1056-70. doi: 10.1021/ic901967h.
High level electronic structure calculations were used to evaluate reliable, self-consistent thermochemical data sets for the third row transition metal hexafluorides. The electron affinities, heats of formation, first (MF(6) --> MF(5) + F) and average M-F bond dissociation energies, and fluoride affinities of MF(6) (MF(6) + F(-) --> MF(7)(-)) and MF(5) (MF(5) + F(-) --> MF(6)(-)) were calculated. The electron affinities which are a direct measure for the oxidizer strength increase monotonically from WF(6) to AuF(6), with PtF(6) and AuF(6) being extremely powerful oxidizers. The inclusion of spin orbit corrections is necessary to obtain the correct qualitative order for the electron affinities. The calculated electron affinities increase with increasing atomic number, are in good agreement with the available experimental values, and are as follows: WF(6) (3.15 eV), ReF(6) (4.58 eV), OsF(6) (5.92 eV), IrF(6) (5.99 eV), PtF(6) (7.09 eV), and AuF(6) (8.20 eV). A wide range of density functional theory exchange-correlation functionals were also evaluated, and only three gave satisfactory results. The corresponding pentafluorides are extremely strong Lewis acids, with OsF(5), IrF(5), PtF(5), and AuF(5) significantly exceeding the acidity of SbF(5). The optimized geometries of the corresponding MF(7)(-) anions for W through Ir are classical MF(7)(-) anions with M-F bonds; however, for PtF(7)(-) and AuF(7)(-) non-classical anions were found with a very weak external F-F bond between an MF(6)(-) fragment and a fluorine atom. These two anions are text book examples for "superhalogens" and can serve as F atom sources under very mild conditions, explaining the ability of PtF(6) to convert NF(3) to NF(4)(+), ClF(5) to ClF(6)(+), and Xe to XeF(+) and why Bartlett failed to observe XePtF(6) as the reaction product of the PtF(6)/Xe reaction.
使用高精度电子结构计算方法,评估了第三周期过渡金属六氟化物可靠、自洽的热化学数据集。计算了电子亲和能、生成焓、第一(MF6 → MF5 + F)和平均 M-F 键离解能,以及 MF6(MF6 + F- → MF7-)和 MF5(MF5 + F- → MF6-)的氟化物亲和能。电子亲和能是氧化剂强度的直接度量,从 WF6 到 AuF6 单调增加,PtF6 和 AuF6 是极强的氧化剂。为了获得电子亲和能的正确定性顺序,必须包含自旋轨道修正。计算得到的电子亲和能随原子序数的增加而增加,与可用的实验值吻合较好,具体数值如下:WF6(3.15 eV)、ReF6(4.58 eV)、OsF6(5.92 eV)、IrF6(5.99 eV)、PtF6(7.09 eV)和 AuF6(8.20 eV)。还评估了多种密度泛函交换相关泛函,只有三种给出了令人满意的结果。相应的五氟化物是极强的路易斯酸,其中 OsF5、IrF5、PtF5 和 AuF5 的酸性明显超过 SbF5。对于 W 到 Ir 的相应 MF7-阴离子的优化几何形状是具有 M-F 键的经典 MF7-阴离子;然而,对于 PtF7-和 AuF7-阴离子,发现了非经典阴离子,其中一个 MF6-片段和一个氟原子之间存在非常弱的外部 F-F 键。这两个阴离子是“超卤化物”的典型例子,可以在非常温和的条件下作为 F 原子的来源,这解释了 PtF6 将 NF3 转化为 NF4+、ClF5 转化为 ClF6+以及 Xe 转化为 XeF+的能力,以及为什么 Bartlett 未能观察到 PtF6 和 Xe 的反应产物是 XePtF6。