Whitfield John B, Dy Veronica, McQuilty Robert, Zhu Gu, Heath Andrew C, Montgomery Grant W, Martin Nicholas G
Genetic Epidemiology Unit, Queensland Institute of Medical Research, Brisbane, Australia.
Environ Health Perspect. 2010 Jun;118(6):776-82. doi: 10.1289/ehp.0901541. Epub 2010 Jan 5.
An excess of toxic trace elements or a deficiency of essential ones has been implicated in many common diseases or public health problems, but little is known about causes of variation between people living within similar environments. We estimated effects of personal and socioeconomic characteristics on concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) in erythrocytes and tested for genetic effects using data from twin pairs.
We used blood samples from 2,926 adult twins living in Australia (1,925 women and 1,001 men; 30-92 years of age) and determined element concentrations in erythrocytes by inductively coupled plasma-mass spectrometry. We assessed associations between element concentrations and personal and socioeconomic characteristics, as well as the sources of genetic and environmental variation and covariation in element concentrations. We evaluated the chromosomal locations of genes affecting these characteristics by linkage analysis in 501 dizygotic twin pairs.
Concentrations of Cu, Se, and Zn, and of As and Hg showed substantial correlations, concentrations of As and Hg due mainly to common genetic effects. Genetic linkage analysis showed significant linkage for Pb [chromosome 3, near SLC4A7 (solute carrier family 4, sodium bicarbonate cotransporter, member 7)] and suggestive linkage for Cd (chromosomes 2, 18, 20, and X), Hg (chromosome 5), Se (chromosomes 4 and 8), and Zn {chromosome 2, near SLC11A1 [solute carrier family 11 (proton-coupled divalent metal ion transporters)]}.
Although environmental exposure is a precondition for accumulation of toxic elements, individual characteristics and genetic factors are also important. Identification of the contributory genetic polymorphisms will improve our understanding of trace and toxic element uptake and distribution mechanisms.
许多常见疾病或公共卫生问题都与有毒微量元素过量或必需元素缺乏有关,但对于生活在相似环境中的人群之间存在差异的原因却知之甚少。我们估计了个人和社会经济特征对红细胞中砷(As)、镉(Cd)、铜(Cu)、汞(Hg)、铅(Pb)、硒(Se)和锌(Zn)浓度的影响,并利用双胞胎的数据测试了遗传效应。
我们使用了来自澳大利亚的2926名成年双胞胎(1925名女性和1001名男性;年龄在30 - 92岁之间)的血液样本,通过电感耦合等离子体质谱法测定红细胞中的元素浓度。我们评估了元素浓度与个人和社会经济特征之间的关联,以及元素浓度的遗传和环境变异及协变来源。我们通过对501对异卵双胞胎进行连锁分析,评估了影响这些特征的基因的染色体位置。
铜、硒和锌的浓度,以及砷和汞的浓度显示出显著的相关性,砷和汞的浓度主要归因于共同的遗传效应。遗传连锁分析显示铅[3号染色体,靠近溶质载体家族4成员7(SLC4A7)(溶质载体家族4,碳酸氢钠共转运体,成员7)]存在显著连锁,镉(2号、18号、20号和X染色体)、汞(5号染色体)、硒(4号和8号染色体)和锌{2号染色体,靠近溶质载体家族11成员1(SLC11A1)[溶质载体家族11(质子偶联二价金属离子转运体)]}存在提示性连锁。
虽然环境暴露是有毒元素积累的前提条件,但个体特征和遗传因素也很重要。确定起作用的基因多态性将有助于我们更好地理解微量元素和有毒元素的摄取及分布机制。