Suppr超能文献

三种新型经椎弓根多节段固定系统的生物力学测试。

Biomechanical testing of three newly developed transpedicular multisegmental fixation systems.

机构信息

Department of Orthopedic Surgery, University of Bern, Inselspital, Bern, Switzerland.

出版信息

Eur Spine J. 1992 Sep;1(2):109-16. doi: 10.1007/BF00300937.

Abstract

A series of 216 biomechanical tests with 36 calf spines were performed to evaluate the rigidity of three newly developed prototypes of transpedicular fixation systems (Spine Fix, AO/ASIF prototype 1, AO/ASIF prototype 2) as compared to the already established Cotrel-Dubousset (CD) system. The Spine Fix system follows the same principle of spinal fixation as the CD system, while the two prototypes of the AO/ASIF group introduce a new concept of spinal reduction and fixation technique, using a three-dimensional adjustable fastening system of transpedicular screws to a longitudinal rod. This allows for correction and fixation of the instrumented vertebra segments in any position. During the tests the main point of interest was whether the newly gained degrees of freedom are associated with a loss of stiffness in the construct. Furthermore, the study evaluated whether transpedicular systems should be optimized from the technological point of view, or whether the stability and rigidity of these systems is determined mainly by the quality of pedicular anchorage. Load displacement was measured using a calf spine model with a precisely defined three-column lesion. Each implant was loaded up to 15 Nm in flexion, extension, lateral bending, and axial rotation. In all tests, the construct behaved in a highly linear fashion (r2> 0.94). By continously measuring the forces and moments at the cranial end of the spine specimen high accuracy of the tests was achieved (standard deviation: x-axis, 1.74%; y-axis, 1.36%; z-axis, 1.21%). In general, the stifness was found to be highest in lateral bending, followed by flexion/extension and axial rotation. Spine Fix was the stiffest implant in flexion/extension, AO/ASIF prototype 1 in lateral bending, and AO/ ASIF prototype 2 in rotation. In comparison to the CD system (stiffness of CD = 100%), differences in stiffness ranged from 77.3% prototype 1 to 140.8% Spine Fix in flexion, from 78.2% prototype 2b to 134.7% Spine Fix in extension, from 108.1% prototype 2b to 213.5% prototype 1 in lateral bending, and from 80.3% prototype 1 to 110.6% prototype 2 in axial rotation. The Spine Fix and prototype 2 systems showed equal or higher stiffness coefficients compared to the CD system. Prototype 1 is significantly more flexible, except in lateral bending, than the CD. From the technical point of view, the two AO/ ASIF prototypes allow the correction and fixation of an instrumented vertebra in any position. Prototype 2, despite the additional joint between transpedicular screws and longitudinal rods, shows stiffness comparable to that of the CD system.

摘要

对 36 个小牛脊柱进行了 216 项生物力学测试,以评估三种新开发的经椎弓根固定系统(SpineFix、AO/ASIF 原型 1、AO/ASIF 原型 2)的刚性,与已建立的 Cotrel-Dubousset(CD)系统进行比较。SpineFix 系统遵循与 CD 系统相同的脊柱固定原理,而 AO/ASIF 组的两个原型引入了一种新的脊柱复位和固定技术概念,使用三维可调节经椎弓根螺钉固定系统固定到纵向杆上。这允许在任何位置对仪器化的椎骨段进行矫正和固定。在测试过程中,主要关注的是新获得的自由度是否会导致结构的刚性丧失。此外,该研究还评估了经椎弓根系统是否应从技术角度进行优化,或者这些系统的稳定性和刚性是否主要取决于椎弓根锚固的质量。使用具有精确定义的三柱病变的小牛脊柱模型测量加载位移。将每个植入物加载至 15Nm,进行弯曲、伸展、侧屈和轴向旋转。在所有测试中,结构表现出高度的线性(r2>0.94)。通过连续测量脊柱标本颅端的力和力矩,实现了测试的高精度(标准偏差:x 轴,1.74%;y 轴,1.36%;z 轴,1.21%)。一般来说,在侧屈时刚性最高,其次是弯曲/伸展和轴向旋转。SpineFix 在弯曲/伸展时是最刚性的植入物,AO/ASIF 原型 1 在侧屈时是最刚性的植入物,AO/ASIF 原型 2 在旋转时是最刚性的植入物。与 CD 系统(CD 的刚性为 100%)相比,在弯曲时,原型 1 的刚性差异范围为 77.3%至 140.8%,原型 2b 的刚性差异范围为 78.2%至 134.7%,在伸展时,原型 2b 的刚性差异范围为 108.1%至 213.5%,原型 1 的刚性差异范围为 80.3%至 110.6%,原型 1 的刚性差异范围为 80.3%至 110.6%,原型 1 的刚性差异范围为 80.3%至 110.6%,原型 1 的刚性差异范围为 80.3%至 110.6%。SpineFix 和原型 2 系统的刚性系数与 CD 系统相等或更高。原型 1 除了在侧屈时比 CD 系统更灵活。从技术角度来看,这两种 AO/ASIF 原型允许在任何位置对仪器化的椎骨进行矫正和固定。尽管原型 2 椎弓根螺钉和纵向杆之间有额外的关节,但它的刚性与 CD 系统相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验