Suppr超能文献

理解移植中的差异:社交网络提供了缺失的线索吗?

Understanding disparities in transplantation: do social networks provide the missing clue?

机构信息

Transplant Institute and Center for Transplant Outcomes and Quality Improvement at Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

出版信息

Am J Transplant. 2010 Mar;10(3):472-6. doi: 10.1111/j.1600-6143.2009.02963.x. Epub 2010 Jan 5.

Abstract

Although the National Organ Transplant Act calls for equity in access to transplantation, scarcity and racial disparities persist. To date, even the most comprehensive models have been unable to adequately explain these racial disparities, leaving policymakers unsure how best to intervene. Previous individual-level analyses, which have implicated risk factors such as race, financial status, cultural beliefs, unemployment, lack of commitment to surgery and lack of continuous access to care, overlook contextual and social network exposures. Social networks present a compelling way to examine cumulative risk clustered across individuals. Social networks have been shown to influence health outcomes and health behaviors through various pathways, including shared social capital, engaging in similar or group risky behaviors, diffusion of information and adopting or propagating social norms. Precursors to chronic kidney disease, including obesity, have been shown to spread through social networks. Social network analysis can reveal shared risks between potential donors and recipients in a given network, clarifying the likelihood of finding an appropriate match through either direct donation or paired exchanges. This paper presents a novel application of social network analysis to transplantation, illustrating implications for disparities and future clinical interventions.

摘要

尽管《国家器官移植法案》呼吁在器官移植方面实现公平,但器官短缺和种族差异仍然存在。迄今为止,即使是最全面的模型也无法充分解释这些种族差异,这使得政策制定者不确定如何最好地进行干预。以前的个体层面分析表明,种族、财务状况、文化信仰、失业、对手术的承诺不足以及持续获得护理的机会不足等风险因素与此有关,但这些分析忽略了背景和社交网络的暴露。社交网络提供了一种引人注目的方式,可以检查个体之间聚集的累积风险。社交网络通过多种途径影响健康结果和健康行为,包括共享社会资本、从事类似或群体高风险行为、信息传播以及采用或传播社会规范。包括肥胖症在内的慢性肾脏病的前驱因素已被证明可以通过社交网络传播。社交网络分析可以揭示特定网络中潜在供体和受体之间的共同风险,通过直接捐赠或配对交换找到合适匹配的可能性。本文提出了社交网络分析在移植中的新应用,说明了其对差异和未来临床干预的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验