Department of Biomedical Engineering, School of Engineering Applied Science, University of Rochester, Rochester, NY 14627, USA.
J Microsc. 2010 Jan;237(1):39-50. doi: 10.1111/j.1365-2818.2009.03300.x.
Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.
图像互相关显微镜是一种通过测量延时图像序列中的时间自相关函数衰减来定量荧光特征在图像中运动的技术。图像互相关显微镜传统上采用激光扫描显微镜,因为该技术是基于激光的荧光相关光谱学的延伸。在这项工作中,我们表明,图像相关也可以用于测量均匀照明或宽场成像系统中的荧光动力学,我们将我们的新方法称为均匀照明图像相关显微镜。宽场显微镜不仅是一种更简单、更经济的成像方式,而且相对于激光扫描系统提供了更大的时间分辨率的能力。在传统的激光扫描图像互相关显微镜中,横向流动性是从图像的时间去相关计算出来的,其中特征长度是照明激光束的宽度。在宽场显微镜中,扩散长度是通过空间自相关函数使用特征尺寸定义的。当物体从其原始位置扩散时,相关函数在时间上的衰减就会发生。我们表明,高斯和均匀特征的理论和模拟比较表明,时间自相关函数强烈依赖于颗粒尺寸,而不依赖于颗粒形状。在本报告中,我们使用粒子跟踪算法的分析、蒙特卡罗和实验验证,建立了均匀照明图像相关显微镜中空间自相关函数特征尺寸、时间自相关函数特征时间和扩散系数之间的关系。此外,我们还展示了均匀照明图像相关显微镜分析人中性粒细胞表面粘附分子域聚集和扩散的应用。