Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
J Biol Chem. 2010 Mar 5;285(10):7197-207. doi: 10.1074/jbc.M109.047084. Epub 2010 Jan 7.
During mitosis, the stacked structure of the Golgi undergoes a continuous fragmentation process. The generated mitotic fragments are evenly distributed into the daughter cells and reassembled into new Golgi stacks. This disassembly and reassembly process is critical for Golgi biogenesis during cell division, but the underlying molecular mechanism is poorly understood. In this study, we have recapitulated this process using an in vitro assay and analyzed the proteins associated with interphase and mitotic Golgi membranes using a proteomic approach. Incubation of purified rat liver Golgi membranes with mitotic HeLa cell cytosol led to fragmentation of the membranes; subsequent treatment of these membranes with interphase cytosol allowed the reassembly of the Golgi fragments into new Golgi stacks. These membranes were then used for quantitative proteomics analyses by combining the isobaric tags for relative and absolute quantification approach with OFFGEL isoelectric focusing separation and liquid chromatography-matrix assisted laser desorption ionization-tandem mass spectrometry. In three independent experiments, a total of 1,193 Golgi-associated proteins were identified and quantified. These included broad functional categories, such as Golgi structural proteins, Golgi resident enzymes, SNAREs, Rab GTPases, cargo, and cytoskeletal proteins. More importantly, the combination of the quantitative approach with Western blotting allowed us to unveil 84 proteins with significant changes in abundance under the mitotic condition compared with the interphase condition. Among these proteins, several COPI coatomer subunits (alpha, beta, gamma, and delta) are of particular interest. Altogether, this systematic quantitative proteomic study revealed candidate proteins of the molecular machinery that control the Golgi disassembly and reassembly processes in the cell cycle.
在有丝分裂过程中,堆叠的高尔基体结构经历连续的碎片化过程。生成的有丝分裂片段均匀地分配到子细胞中,并重新组装成新的高尔基体堆栈。这个拆卸和重新组装的过程对于细胞分裂过程中的高尔基体生物发生至关重要,但背后的分子机制还知之甚少。在这项研究中,我们使用体外测定法再现了这一过程,并使用蛋白质组学方法分析了与有丝分裂高尔基体膜相关的蛋白质。用有丝分裂的 HeLa 细胞质孵育纯化的大鼠肝高尔基体膜会导致膜的碎片化;随后用间期细胞质处理这些膜,允许高尔基体片段重新组装成新的高尔基体堆栈。然后,通过将相对和绝对定量的同位素标记与 OFFGEL 等电聚焦分离和液相色谱-基质辅助激光解吸电离串联质谱相结合,将这些膜用于定量蛋白质组学分析。在三个独立的实验中,总共鉴定和定量了 1193 种与高尔基体相关的蛋白质。这些包括广泛的功能类别,如高尔基体结构蛋白、高尔基体驻留酶、SNAREs、Rab GTPases、货物和细胞骨架蛋白。更重要的是,定量方法与 Western blotting 的结合使我们能够揭示 84 种在有丝分裂条件下与间期条件相比丰度有显著变化的蛋白质。在这些蛋白质中,几种 COPI 衣被蛋白亚基(alpha、beta、gamma 和 delta)特别引人注目。总的来说,这项系统的定量蛋白质组学研究揭示了控制细胞周期中高尔基体拆卸和重新组装过程的分子机制的候选蛋白。