Biometrology, Alameda, California, USA.
Nanomedicine. 2010 Aug;6(4):510-5. doi: 10.1016/j.nano.2009.12.003. Epub 2010 Jan 6.
Nanoscale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces is important to developing motile biomimetic nanodevices powered by biological motors for nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding and give rise to rhythmic beating. This force-generating action pushes the sperm cell through viscous media. Here we report new nanoscale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Using a modified atomic force microscope, single-cell recordings reveal discrete approximately 50-ms pulses oscillating with amplitude 9.8 +/- 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10(-16) J per pulse, equivalent to the hydrolysis of approximately 5500 molecules of adenosine triphosphate. The mechanochemical coupling at each active dynein head is approximately 2.2 pN per adenosine triphosphate molecule and approximately 3.9 pN per dynein arm. From the clinical editor: In this paper, nanoscale mechanical forces generated by axonemal dynein motors derived from sperm flagellum are examined and reported. These motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces is important to developing motile biomimetic nanodevices powered by biological motors for nanomedicine.
纳米尺度的机械力由马达蛋白产生,对正常的细胞和机体功能至关重要。测量和利用这些力的能力对于开发由生物马达驱动的用于纳米医学的运动仿生纳米器件非常重要。位于精子鞭毛内的轴丝动力蛋白马达驱动微管滑动,产生有节奏的拍打。这种产生力的作用推动精子细胞穿过粘性介质。在这里,我们报告了关于精子鞭毛如何产生推进力以及该力随时间如何变化的新纳米尺度信息。使用改进的原子力显微镜,单细胞记录显示出振幅为 9.8 ± 2.6 nN 的离散约 50-ms 脉冲,与脉冲频率(3.5-19.5 Hz)无关。每个细胞执行的平均功为 4.6 x 10(-16) J 每个脉冲,相当于大约 5500 个三磷酸腺苷分子的水解。每个活性动力蛋白头部的机械化学耦合同化约 2.2 pN 每三磷酸腺苷分子和约 3.9 pN 每动力蛋白臂。来自临床编辑:在本文中,研究并报告了源自精子鞭毛的轴丝动力蛋白马达产生的纳米尺度机械力。这些马达蛋白对正常的细胞和机体功能至关重要。测量和利用这些力的能力对于开发由生物马达驱动的用于纳米医学的运动仿生纳米器件非常重要。