Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.
Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
Nat Nanotechnol. 2024 Apr;19(4):494-503. doi: 10.1038/s41565-023-01567-0. Epub 2024 Jan 3.
Microscale organisms and specialized motile cells use protein-based spring-like responsive structures to sense, grasp and move. Rendering this biomechanical transduction functionality in an artificial micromachine for applications in single-cell manipulations is challenging due to the need for a bio-applicable nanoscale spring system with a large and programmable strain response to piconewton-scale forces. Here we present three-dimensional nanofabrication and monolithic integration, based on an acrylic elastomer photoresist, of a magnetic spring system with quantifiable compliance sensitive to 0.5 pN, constructed with customized elasticity and magnetization distributions at the nanoscale. We demonstrate the effective design programmability of these 'picospring' ensembles as energy transduction mechanisms for the integrated construction of customized soft micromachines, with onboard sensing and actuation functions at the single-cell scale for microrobotic grasping and locomotion. The integration of active soft springs into three-dimensional nanofabrication offers an avenue to create biocompatible soft microrobots for non-disruptive interactions with biological entities.
微观生物和特化的运动细胞利用基于蛋白质的类弹簧响应结构来感知、抓取和移动。在用于单细胞操作的人工微机器中呈现这种生物力学转导功能具有挑战性,因为需要具有大应变和可编程应变响应的生物适用的纳米级弹簧系统,以对皮牛顿级的力作出响应。在这里,我们提出了基于丙烯酸酯弹性体光致抗蚀剂的三维纳米制造和整体集成,构建了具有可量化的 0.5 pN 灵敏度的磁弹簧系统,其具有定制的弹性和纳米级的磁化分布。我们展示了这些“皮克林”组件作为能量转换机制的有效设计可编程性,用于集成构建定制的软微机器,具有单细胞尺度的板载传感和致动功能,用于微机器人抓取和运动。将主动软弹簧集成到三维纳米制造中为创建与生物实体进行非破坏性相互作用的生物相容软微机器人提供了一种途径。