Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
Acta Biomater. 2010 Jul;6(7):2365-81. doi: 10.1016/j.actbio.2010.01.001. Epub 2010 Jan 7.
Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity, all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors.
长期以来,承重软组织的替代或再生一直是生物活性材料发展的动力。在不断发展的过程中,我们对天然组织中常见的复杂多层次结构排列和相互作用的理解仍然有限,这给目前的研究带来了阻碍。目前的生物材料加工技术可以实现一定程度的可控微观结构,可用于开发模型系统,以推断基质形态对细胞功能的基本生物学意义。此外,开发允许模拟实验得出的观察结果的计算框架,代表了从主要基于经验的领域的积极转变,使我们能够更深入地了解我们最终希望模拟的高度复杂的生物学机制。目前正在进行的研究积极探索新材料和加工方法,以控制材料结构达到微观尺度,从而维持或提高细胞活力、引导组织生长并提供机械完整性,同时还具有可控降解的能力。本文的目的不是仅仅关注材料加工,而是评估这些技术生产机械性能良好的组织替代品的能力,强调这些材料中产生的独特结构特征,并讨论这些特征如何转化为明显的宏观生物力学行为。