Suppr超能文献

相似文献

1
On the biomechanical function of scaffolds for engineering load-bearing soft tissues.
Acta Biomater. 2010 Jul;6(7):2365-81. doi: 10.1016/j.actbio.2010.01.001. Epub 2010 Jan 7.
2
Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy.
Biomaterials. 2006 Jul;27(19):3631-8. doi: 10.1016/j.biomaterials.2006.02.024. Epub 2006 Mar 20.
4
Electrospun nanofibrous scaffolds for engineering soft connective tissues.
Methods Mol Biol. 2011;726:243-58. doi: 10.1007/978-1-61779-052-2_16.
5
Fabrication of dense anisotropic collagen scaffolds using biaxial compression.
Acta Biomater. 2018 Jan;65:76-87. doi: 10.1016/j.actbio.2017.11.017. Epub 2017 Nov 8.
6
Factors influencing the long-term behavior of extracellular matrix-derived scaffolds for musculoskeletal soft tissue repair.
J Long Term Eff Med Implants. 2012;22(3):181-93. doi: 10.1615/jlongtermeffmedimplants.2013006120.
7
Cartilage extracellular matrix as a biomaterial for cartilage regeneration.
Ann N Y Acad Sci. 2016 Nov;1383(1):139-159. doi: 10.1111/nyas.13278.
8
Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
Cardiovasc Eng Technol. 2024 Oct;15(5):522-549. doi: 10.1007/s13239-024-00737-y. Epub 2024 Jul 2.
10
Mechanical tension as a driver of connective tissue growth in vitro.
Med Hypotheses. 2014 Jul;83(1):111-5. doi: 10.1016/j.mehy.2014.03.031. Epub 2014 Apr 5.

引用本文的文献

1
Functionalization of Polycaprolactone 3D Scaffolds with Hyaluronic Acid Glycine-Peptide Conjugates and Endothelial Cell Adhesion.
Biomacromolecules. 2025 Mar 10;26(3):1771-1787. doi: 10.1021/acs.biomac.4c01559. Epub 2025 Feb 23.
3
Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review.
RSC Adv. 2022 Mar 10;12(13):7689-7711. doi: 10.1039/d1ra07657d. eCollection 2022 Mar 8.
4
Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering.
Bioengineering (Basel). 2020 Oct 3;7(4):122. doi: 10.3390/bioengineering7040122.
5
Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels.
Sci Adv. 2020 Apr 17;6(16):eaaz9531. doi: 10.1126/sciadv.aaz9531. eCollection 2020 Apr.
6
The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering.
APL Bioeng. 2019 Oct 15;3(4):041501. doi: 10.1063/1.5116579. eCollection 2019 Dec.
8
Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering.
Philos Trans A Math Phys Eng Sci. 2019 Feb 11;377(2138):20180268. doi: 10.1098/rsta.2018.0268.

本文引用的文献

1
Scale-dependent fiber kinematics of elastomeric electrospun scaffolds for soft tissue engineering.
J Biomed Mater Res A. 2010 Jun 1;93(3):1032-42. doi: 10.1002/jbm.a.32593.
2
Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers.
Biomaterials. 2009 Oct;30(31):6202-12. doi: 10.1016/j.biomaterials.2009.07.063. Epub 2009 Aug 15.
3
Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation.
J Mech Behav Biomed Mater. 2008 Oct;1(4):326-35. doi: 10.1016/j.jmbbm.2008.01.003. Epub 2008 Jan 25.
4
Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds.
Biomaterials. 2009 Sep;30(25):4094-103. doi: 10.1016/j.biomaterials.2009.04.024. Epub 2009 May 23.
5
Bioengineering challenges for heart valve tissue engineering.
Annu Rev Biomed Eng. 2009;11:289-313. doi: 10.1146/annurev-bioeng-061008-124903.
7
Self-assembly of giant peptide nanobelts.
Nano Lett. 2009 Mar;9(3):945-51. doi: 10.1021/nl802813f.
9
Review: Hydrogels for cell immobilization.
Biotechnol Bioeng. 1996 May 20;50(4):357-64. doi: 10.1002/(SICI)1097-0290(19960520)50:4<357::AID-BIT2>3.0.CO;2-K.
10
A structural constitutive model for the human lens capsule.
Biomech Model Mechanobiol. 2009 Jun;8(3):217-31. doi: 10.1007/s10237-008-0130-5. Epub 2008 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验