Suppr超能文献

学习运动协同作用的阶段:基于平衡态假说的观点。

Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.

机构信息

Department of Kinesiology, Rec. Hall-268N, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Hum Mov Sci. 2010 Oct;29(5):642-54. doi: 10.1016/j.humov.2009.11.002. Epub 2010 Jan 8.

Abstract

This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s) and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable ("good variability"). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the "good variability". Experimental support for the suggested scheme is reviewed.

摘要

这篇综述描述了一种基于最近协同作用概念、非控制流假设和平衡点假设(参考构型)的新的运动学习阶段理论,这些理论将这些概念融合到一个单一的运动控制方案中。丰富原则和最小最终作用原则为分析由冗余元素集执行的自然运动动作提供了基础。引入了两个主要的运动学习阶段,分别对应于(1)发现和加强稳定显著性能变量的运动协同作用,以及(2)当优化运动性能的其他方面时,它们的弱化。第一阶段可以看作由两个步骤组成,即适当的参考构型轨迹的详细说明和稳定参考构型轨迹的多关节(多肌肉)协同作用的详细说明。这两个步骤都有望导致与显著性能变量的期望时间轮廓兼容的元素变量空间中的更大变化(“良好可变性”)。在第二阶段调整控制以适应性能的其他方面(例如,美观、能量消耗、时间、疲劳等)可能会导致“良好可变性”下降。综述了对所提出方案的实验支持。

相似文献

1
Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.
Hum Mov Sci. 2010 Oct;29(5):642-54. doi: 10.1016/j.humov.2009.11.002. Epub 2010 Jan 8.
2
Motor synergies and the equilibrium-point hypothesis.
Motor Control. 2010 Jul;14(3):294-322. doi: 10.1123/mcj.14.3.294.
3
Motor control theories and their applications.
Medicina (Kaunas). 2010;46(6):382-92.
4
Multi-finger synergies and the muscular apparatus of the hand.
Exp Brain Res. 2018 May;236(5):1383-1393. doi: 10.1007/s00221-018-5231-5. Epub 2018 Mar 12.
5
Optimality versus variability: effect of fatigue in multi-finger redundant tasks.
Exp Brain Res. 2012 Feb;216(4):591-607. doi: 10.1007/s00221-011-2963-x. Epub 2011 Dec 1.
6
Stability of hand force production. II. Ascending and descending synergies.
J Neurophysiol. 2018 Sep 1;120(3):1045-1060. doi: 10.1152/jn.00045.2018. Epub 2018 Jun 6.
7
Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations.
Exp Brain Res. 2006 Nov;175(4):641-53. doi: 10.1007/s00221-006-0583-7. Epub 2006 Jun 28.
8
Learning multi-finger synergies: an uncontrolled manifold analysis.
Exp Brain Res. 2004 Aug;157(3):336-50. doi: 10.1007/s00221-004-1850-0. Epub 2004 Mar 20.
9
The bliss (not the problem) of motor abundance (not redundancy).
Exp Brain Res. 2012 Mar;217(1):1-5. doi: 10.1007/s00221-012-3000-4. Epub 2012 Jan 14.
10
Fifty Years of Physics of Living Systems.
Adv Exp Med Biol. 2016;957:81-103. doi: 10.1007/978-3-319-47313-0_5.

引用本文的文献

5
Biomimetic learning of hand gestures in a humanoid robot.
Front Hum Neurosci. 2024 Jul 19;18:1391531. doi: 10.3389/fnhum.2024.1391531. eCollection 2024.
6
Editorial: The role of movement variability in motor control and learning, analysis methods and practical applications.
Front Psychol. 2023 Aug 3;14:1260878. doi: 10.3389/fpsyg.2023.1260878. eCollection 2023.
8
Use of Surface Electromyography to Estimate End-Point Force in Redundant Systems: Comparison between Linear Approaches.
Bioengineering (Basel). 2023 Feb 10;10(2):234. doi: 10.3390/bioengineering10020234.
10
Motor Synergies Measurement Reveals the Relevant Role of Variability in Reward-Based Learning.
Sensors (Basel). 2021 Sep 27;21(19):6448. doi: 10.3390/s21196448.

本文引用的文献

1
Motor abundance contributes to resolving multiple kinematic task constraints.
Motor Control. 2010 Jan;14(1):83-115. doi: 10.1123/mcj.14.1.83.
2
The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies.
Exp Brain Res. 2009 Jun;196(2):263-77. doi: 10.1007/s00221-009-1846-x. Epub 2009 May 26.
3
Joint coordination during bimanual transport of real and imaginary objects.
Neurosci Lett. 2009 Jun 5;456(2):80-4. doi: 10.1016/j.neulet.2009.03.084. Epub 2009 Mar 31.
4
The equilibrium-point hypothesis--past, present and future.
Adv Exp Med Biol. 2009;629:699-726. doi: 10.1007/978-0-387-77064-2_38.
5
Hierarchical control of static prehension: II. Multi-digit synergies.
Exp Brain Res. 2009 Mar;194(1):1-15. doi: 10.1007/s00221-008-1663-7. Epub 2008 Dec 2.
6
Multifinger prehension: an overview.
J Mot Behav. 2008 Sep;40(5):446-76. doi: 10.3200/JMBR.40.5.446-476.
8
Do synergies decrease force variability? A study of single-finger and multi-finger force production.
Exp Brain Res. 2008 Jul;188(3):411-25. doi: 10.1007/s00221-008-1371-3. Epub 2008 Apr 19.
9
What do synergies do? Effects of secondary constraints on multidigit synergies in accurate force-production tasks.
J Neurophysiol. 2008 Feb;99(2):500-13. doi: 10.1152/jn.01029.2007. Epub 2007 Nov 28.
10
Threshold position control and the principle of minimal interaction in motor actions.
Prog Brain Res. 2007;165:267-81. doi: 10.1016/S0079-6123(06)65017-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验