Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA.
Nat Nanotechnol. 2010 Feb;5(2):143-7. doi: 10.1038/nnano.2009.451. Epub 2010 Jan 10.
In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1-2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO(3). Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices.
在传统的固态光伏中,电子-空穴对是通过半导体中的光吸收产生的,并通过跨越微米厚的耗尽区的电场分离。这些器件能够产生的最大电压等于半导体的电子能带隙。在这里,我们报告了一种用于光伏电荷分离的根本不同的机制的发现,该机制在 1-2nm 的距离上运行,并产生显著高于能带隙的电压。这种分离发生在复杂氧化物 BiFeO(3) 铁电畴壁中自然出现的静电势的先前未观察到的纳米级台阶处。电场对畴结构的控制允许光伏效应的极性反转或关闭。这种新的控制程度和产生的高电压可能在光电设备中得到应用。