Suppr超能文献

使用二维自主微流控技术实现三维化学轮廓操控。

Three-dimensional chemical profile manipulation using two-dimensional autonomous microfluidic control.

机构信息

Departments of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3890, USA.

出版信息

J Am Chem Soc. 2010 Feb 3;132(4):1339-47. doi: 10.1021/ja9079572.

Abstract

The ability to specify or control spatiotemporal chemical environments is critical for controlling diverse processes from chemical synthesis to cellular responses. When established by microfluidics methods, this chemical control has largely been limited to two dimensions and by the need for using complex approaches. The ability to create three-dimensional (3D) chemical patterns is becoming more critical as microfluidics is beginning to have novel applications at larger millifluidic scales, including model organism behavior, embryonic development, and optofluidics. Here, we present a simple approach to create 3D chemical patterns that can be controlled in space and time via two-dimensional (2D), single-layer fluidic modules. Not only can we employ autonomous flow in a 2D fluidic configuration to produce a 3D pattern, but with very simple changes in the 2D configuration, the chemical pattern can be "focused and defocused" within the 3D cross section. We also show that these chemical patterns can be predicted by computational fluid dynamics simulations with high experimental correlation. These simulations allow analyses of the characteristics of interface behaviors with respect to three basic yet critical parameters that need to be thoroughly considered in scaling-up from microfluidic to millifluidic research: Reynolds number (Re), inlet geometry, and channel height. The findings not only indicate proof of concept for 3D pattern creation but also reveal that a number of fluidic experiments may have inherent limitations resulting from unrecognized 3D profiles that depend on these parameter choices. These results will be useful for research areas including embryonic development, cellular stimulation, and chemical fabrication approaches.

摘要

能够指定或控制时空化学环境对于控制从化学合成到细胞反应等各种过程至关重要。当通过微流控方法建立这种化学控制时,它在很大程度上仅限于二维空间,并且需要使用复杂的方法。随着微流控技术开始在更大的毫流体规模上具有新的应用,包括模式生物行为、胚胎发育和光流控,创建三维(3D)化学图案的能力变得越来越重要。在这里,我们提出了一种简单的方法来创建可以通过二维(2D)单层流体模块在空间和时间上进行控制的 3D 化学图案。我们不仅可以在 2D 流体配置中采用自主流动来产生 3D 图案,而且通过在 2D 配置中进行非常简单的更改,可以在 3D 横截面内“聚焦和散焦”化学图案。我们还表明,这些化学图案可以通过具有高实验相关性的计算流体动力学模拟进行预测。这些模拟允许分析界面行为特征,针对从微流体到毫流体研究中需要彻底考虑的三个基本但关键的参数:雷诺数(Re)、入口几何形状和通道高度。这些发现不仅表明了 3D 图案创建的概念验证,而且还揭示了许多流体实验可能由于依赖于这些参数选择的未被认识到的 3D 轮廓而存在固有局限性。这些结果将对包括胚胎发育、细胞刺激和化学制造方法在内的研究领域非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验