Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.
Lab Chip. 2011 Jul 7;11(13):2182-8. doi: 10.1039/c1lc20077a. Epub 2011 Apr 28.
Dynamic control of three-dimensional (3D) chemical patterns with both high precision and high speed is important in a range of applications from chemical synthesis, flow cytometry, and multi-scale biological manipulation approaches. A central challenge in controlling 3D chemical patterns is the inability to create rapidly tunable 3D profiles with simple and direct approaches that avoid complicated microfabrication. Here, we present the ability to rapidly and precisely create 3D chemical patterns using a single two-dimensional (2D) microfluidic platform. We are not only able to create these 3D patterns, but can rapidly switch from one mode to another (e.g. from a focused to a defocused pattern in less than 1 second) via simple changes in inlet pressures. A feedback control scheme with a pressure modulation mechanism controls the pressure changes. In addition to experiments, we conducted computational simulations for guiding the optimum design of the channels as well as revealing the sensitivity of the patterns to the channel dimensions; these simulations have high experimental correlations. We also show that microvortices play an important role in creating these tunable 3D patterns in this microfluidic platform. We quantitatively determine the degrees of the focused patterns in 2D cross-sections using a focus index with a 2D Gaussian function. Our integrated approach combining feedback control with simple microfluidics will be useful for researchers in diverse disciplines including chemistry, engineering, physics, and biology.
用高精度和高速率来动态控制三维(3D)化学图案在从化学合成、流式细胞术和多尺度生物操作方法等一系列应用中都很重要。控制 3D 化学图案的一个核心挑战是,无法用简单直接的方法来快速创建可快速调谐的 3D 轮廓,而这些方法又避免了复杂的微加工。在这里,我们提出了一种使用单个二维(2D)微流控平台来快速且精确地创建 3D 化学图案的能力。我们不仅能够创建这些 3D 图案,而且可以通过简单地改变入口压力,在不到 1 秒的时间内从一种模式快速切换到另一种模式(例如,从聚焦模式切换到散焦模式)。一个带有压力调制机制的反馈控制方案控制着压力的变化。除了实验,我们还进行了计算模拟,以指导通道的最佳设计,并揭示图案对通道尺寸的敏感性;这些模拟与实验有很高的相关性。我们还表明,微涡旋在这个微流控平台中创建这些可调谐的 3D 图案中起着重要作用。我们使用具有二维高斯函数的焦点指数来定量确定 2D 横截面中聚焦图案的程度。我们将反馈控制与简单的微流控相结合的综合方法将对包括化学、工程、物理和生物学等不同学科的研究人员有用。