Psychology Department, Princeton University, Princeton, NJ 08540, USA.
Psychol Rev. 2010 Jan;117(1):197-209. doi: 10.1037/a0017808.
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.
A. Redish 等人(2007 年)在条件反射实验中提出了一种基于上下文的学习和消退的强化学习模型,使用“状态分类”的概念将新的观察结果归入状态。在当前的文章中,作者从规范统计推断的角度对这一概念进行了解释。他们专注于更新和潜在抑制,这两种条件反射范式中广泛研究了上下文的操作,结果表明,在一个假设存在无限个潜在原因的模型中进行在线贝叶斯推断,可以描述从这些操作中得到的各种行为结果,其中一些结果对 Redish 等人的模型提出了挑战。此外,在这两种范式中,年幼的动物或在训练前进行海马损伤时,上下文依赖性不存在。作者从推断新原因的能力受限的角度给出了一个解释。