Suppr超能文献

阿奇霉素耐药突变对豚鼠鹦鹉热衣原体毒力和适应性的影响。

Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs.

机构信息

Department of Microbiology and Immunology, F. Edward Hébert School of Medicine Uniformed Services University of Health Sciences, Bethesda, Maryland 20814-4799, USA.

出版信息

Antimicrob Agents Chemother. 2010 Mar;54(3):1094-101. doi: 10.1128/AAC.01321-09. Epub 2010 Jan 11.

Abstract

Azithromycin (AZM) is a major drug used in the treatment and prophylaxis of infections caused by Chlamydia, yet no significant clinical resistance has been reported for these obligate intracellular bacteria. Nevertheless, spontaneous AZM resistance (Azm(r)) arose in vitro at frequencies ranging from 3 x 10(-8) to 8 x 10(-10) for clonal isolates of Chlamydia caviae, which is a natural pathogen of guinea pigs. Sequencing of the unique 23S rRNA gene copy in 44 independent Azm(r) isolates identified single mutations at position A(2058) or A(2059) (Escherichia coli numbering system). While SP(6)AZ(1) (A(2058)C) and SP(6)AZ(2) (A(2059)C) Azm(r) mutants showed growth defects in cell culture and were less pathogenic in the guinea pig ocular infection model than in the parent SP(6), the three isogenic C. caviae isolates grew equally well in the animal. On the other hand, coinoculation of the C. caviae parent strain with one of the Azm(r) strains was detrimental for the mutant strain. This apparent lack of association between pathology and bacterial load in vivo showed that virulence of the two Azm(r) mutants of C. caviae was attenuated. While chlamydial growth in vitro reflects the ability of the bacteria to multiply in permissive cells, survival in the host is a balance between cellular multiplication and clearance by the host immune system. The obligate intracellular nature of Chlamydia may therefore limit emergence of resistance in vivo due to the strength of the immune response induced by the wild-type antibiotic-sensitive bacteria at the time of antibiotic treatment.

摘要

阿奇霉素(AZM)是治疗和预防衣原体感染的主要药物,但这些专性细胞内细菌尚未报道出现显著的临床耐药性。然而,自发的 AZM 耐药性(Azm(r))在体外以 3 x 10(-8) 到 8 x 10(-10) 的频率出现在豚鼠天然病原体沙眼衣原体的克隆分离株中。44 个独立的 Azm(r)分离株中独特的 23S rRNA 基因拷贝的测序确定了 A(2058)或 A(2059)(大肠杆菌编号系统)位置的单个突变。虽然 SP(6)AZ(1)(A(2058)C)和 SP(6)AZ(2)(A(2059)C)Azm(r)突变体在细胞培养中表现出生长缺陷,并且在豚鼠眼感染模型中的致病性低于亲本 SP(6),但这三种同源的沙眼衣原体分离株在动物中生长良好。另一方面,与 Azm(r) 株之一共同接种沙眼衣原体亲本株对突变株有害。这种在体内病理与细菌负荷之间明显缺乏关联表明,两种沙眼衣原体 Azm(r)突变体的毒力减弱。虽然体外的衣原体生长反映了细菌在允许细胞中繁殖的能力,但在宿主中的存活是细菌繁殖与宿主免疫系统清除之间的平衡。因此,由于在抗生素治疗时野生型抗生素敏感细菌诱导的免疫反应的强度,衣原体的专性细胞内性质可能会限制体内耐药性的出现。

相似文献

1
Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs.
Antimicrob Agents Chemother. 2010 Mar;54(3):1094-101. doi: 10.1128/AAC.01321-09. Epub 2010 Jan 11.
4
High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes.
Antimicrob Agents Chemother. 2010 Sep;54(9):3812-6. doi: 10.1128/AAC.00309-10. Epub 2010 Jun 28.
5
Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2.
Antimicrob Agents Chemother. 2007 Dec;51(12):4267-75. doi: 10.1128/AAC.00962-07. Epub 2007 Oct 1.
6
In vitro development and analysis of Escherichia coli and Shigella boydii azithromycin-resistant mutants.
Microb Drug Resist. 2013 Apr;19(2):88-93. doi: 10.1089/mdr.2012.0036. Epub 2012 Nov 23.
10
Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae.
PLoS One. 2019 Nov 7;14(11):e0224324. doi: 10.1371/journal.pone.0224324. eCollection 2019.

引用本文的文献

2
Insights into Chlamydia Development and Host Cells Response.
Microorganisms. 2024 Jun 26;12(7):1302. doi: 10.3390/microorganisms12071302.
3
Direct assessment of possible mutations in the 23S rRNA gene encoding macrolide resistance in Chlamydia trachomatis.
PLoS One. 2022 May 10;17(5):e0265229. doi: 10.1371/journal.pone.0265229. eCollection 2022.
4
An overview of genes and mutations associated with Chlamydiae species' resistance to antibiotics.
Ann Clin Microbiol Antimicrob. 2021 Sep 3;20(1):59. doi: 10.1186/s12941-021-00465-4.
7
Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence.
Curr Top Microbiol Immunol. 2018;412:133-158. doi: 10.1007/82_2017_76.
8
Antichlamydial Dimeric Indole Derivatives from Marine Actinomycete Rubrobacter radiotolerans.
Planta Med. 2017 Jun;83(9):805-811. doi: 10.1055/s-0043-100382. Epub 2017 Jan 17.
9
Natural Products for the Treatment of Chlamydiaceae Infections.
Microorganisms. 2016 Oct 16;4(4):39. doi: 10.3390/microorganisms4040039.

本文引用的文献

1
Lack of macrolide resistance in Chlamydia trachomatis after mass azithromycin distributions for trachoma.
Emerg Infect Dis. 2009 Jul;15(7):1088-90. doi: 10.3201/eid1507.081563.
2
Strain and virulence diversity in the mouse pathogen Chlamydia muridarum.
Infect Immun. 2009 Aug;77(8):3284-93. doi: 10.1128/IAI.00147-09. Epub 2009 May 26.
3
Azithromycin treatment modulates cytokine production in Chlamydia trachomatis infected women.
Basic Clin Pharmacol Toxicol. 2009 Jun;104(6):478-82. doi: 10.1111/j.1742-7843.2009.00395.x. Epub 2009 Mar 27.
4
Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved.
FEMS Immunol Med Microbiol. 2009 Mar;55(2):115-9. doi: 10.1111/j.1574-695X.2008.00516.x.
5
Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):292-7. doi: 10.1073/pnas.0806768106. Epub 2008 Dec 22.
7
The arrested immunity hypothesis and the epidemiology of chlamydia control.
Sex Transm Dis. 2008 Jan;35(1):53-4. doi: 10.1097/OLQ.0b013e31815e41a3.
8
Immune-mediated control of Chlamydia infection.
Cell Microbiol. 2008 Jan;10(1):9-19. doi: 10.1111/j.1462-5822.2007.01069.x. Epub 2007 Nov 2.
9
Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2.
Antimicrob Agents Chemother. 2007 Dec;51(12):4267-75. doi: 10.1128/AAC.00962-07. Epub 2007 Oct 1.
10
The SAFE strategy for trachoma control: Using operational research for policy, planning and implementation.
Bull World Health Organ. 2006 Aug;84(8):613-9. doi: 10.2471/blt.05.28696.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验