Suppr超能文献

衣原体毒力遗传解析的进展与障碍。

Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence.

机构信息

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.

Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

出版信息

Curr Top Microbiol Immunol. 2018;412:133-158. doi: 10.1007/82_2017_76.

Abstract

Obligate intracellular pathogens in the family Chlamydiaceae infect taxonomically diverse eukaryotes ranging from amoebae to mammals. However, many fundamental aspects of chlamydial cell biology and pathogenesis remain poorly understood. Genetic dissection of chlamydial biology has historically been hampered by a lack of genetic tools. Exploitation of the ability of chlamydia to recombine genomic material by lateral gene transfer (LGT) ushered in a new era in chlamydia research. With methods to map mutations in place, genetic screens were able to assign functions and phenotypes to specific chlamydial genes. Development of an approach for stable transformation of chlamydia also provided a mechanism for gene delivery and platforms for disrupting chromosomal genes. Here, we explore how these and other tools have been used to test hypotheses concerning the functions of known chlamydial virulence factors and discover the functions of completely uncharacterized genes. Refinement and extension of the existing genetic tools to additional Chlamydia spp. will substantially advance understanding of the biology and pathogenesis of this important group of pathogens.

摘要

专性细胞内病原体家族衣原体科感染从变形虫到哺乳动物等分类上多样化的真核生物。然而,衣原体的细胞生物学和发病机制的许多基本方面仍然知之甚少。由于缺乏遗传工具,衣原体生物学的遗传剖析在历史上受到阻碍。衣原体通过侧向基因转移(LGT)重组基因组物质的能力的利用开创了衣原体研究的新时代。随着定位突变方法的出现,遗传筛选能够将特定衣原体基因的功能和表型分配给特定基因。稳定转化衣原体方法的开发也为基因传递提供了机制,并为破坏染色体基因提供了平台。在这里,我们探讨了这些和其他工具如何被用于测试关于已知衣原体毒力因子功能的假设,并发现了完全未被表征的基因的功能。对其他衣原体物种的现有遗传工具的改进和扩展将大大提高对这组重要病原体的生物学和发病机制的理解。

相似文献

1
Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence.
Curr Top Microbiol Immunol. 2018;412:133-158. doi: 10.1007/82_2017_76.
3
Genome organization and genomics in : whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny.
Front Cell Infect Microbiol. 2023 May 23;13:1178736. doi: 10.3389/fcimb.2023.1178736. eCollection 2023.
4
The Waddlia genome: a window into chlamydial biology.
PLoS One. 2010 May 28;5(5):e10890. doi: 10.1371/journal.pone.0010890.
5
Chlamydia genomics: providing novel insights into chlamydial biology.
Trends Microbiol. 2014 Aug;22(8):464-72. doi: 10.1016/j.tim.2014.04.013. Epub 2014 Jun 2.
6
Diverse requirements for SRC-family tyrosine kinases distinguish chlamydial species.
mBio. 2011 Mar 22;2(2). doi: 10.1128/mBio.00031-11. Print 2011.
7
Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination.
J Bacteriol. 2016 Jul 13;198(15):2131-9. doi: 10.1128/JB.00161-16. Print 2016 Aug 1.
8
A path forward for the chlamydial virulence factor CPAF.
Microbes Infect. 2013 Dec;15(14-15):1026-32. doi: 10.1016/j.micinf.2013.09.008. Epub 2013 Oct 18.
9
Type III secretion à la Chlamydia.
Trends Microbiol. 2007 Jun;15(6):241-51. doi: 10.1016/j.tim.2007.04.005. Epub 2007 May 7.
10
Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen.
Microbiol Mol Biol Rev. 2016 Mar 30;80(2):411-27. doi: 10.1128/MMBR.00071-15. Print 2016 Jun.

引用本文的文献

1
Isolation and characterization of a Chlamydia muridarum tc0237 mutant from a genetic screen that is attenuated in epithelial cells.
PLoS One. 2025 Aug 5;20(8):e0329637. doi: 10.1371/journal.pone.0329637. eCollection 2025.
2
Diverse animal models for infections: unraveling pathogenesis through the genital and gastrointestinal tracts.
Front Microbiol. 2024 Mar 28;15:1386343. doi: 10.3389/fmicb.2024.1386343. eCollection 2024.
3
Induction of Transmucosal Protection by Oral Vaccination with an Attenuated Chlamydia.
Infect Immun. 2023 May 16;91(5):e0004323. doi: 10.1128/iai.00043-23. Epub 2023 Apr 10.
4
Regulation of chlamydial colonization by IFNγ delivered via distinct cells.
Trends Microbiol. 2023 Mar;31(3):270-279. doi: 10.1016/j.tim.2022.09.002. Epub 2022 Sep 26.
5
Translational gene expression control in Chlamydia trachomatis.
PLoS One. 2022 Jan 27;17(1):e0257259. doi: 10.1371/journal.pone.0257259. eCollection 2022.
6
The growing repertoire of genetic tools for dissecting chlamydial pathogenesis.
Pathog Dis. 2021 May 11;79(5). doi: 10.1093/femspd/ftab025.
9
from Down Under: The Curious Cases of Chlamydial Infections in Australia.
Microorganisms. 2019 Nov 22;7(12):602. doi: 10.3390/microorganisms7120602.
10
Ptr/CTL0175 Is Required for the Efficient Recovery of From Stress Induced by Gamma-Interferon.
Front Microbiol. 2019 Apr 10;10:756. doi: 10.3389/fmicb.2019.00756. eCollection 2019.

本文引用的文献

3
A Novel and Efficient Method for Bacteria Genome Editing Employing both CRISPR/Cas9 and an Antibiotic Resistance Cassette.
Front Microbiol. 2017 May 5;8:812. doi: 10.3389/fmicb.2017.00812. eCollection 2017.
5
Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis.
Curr Protoc Microbiol. 2017 May 16;45:11A.3.1-11A.3.15. doi: 10.1002/cpmc.31.
7
Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins.
J Bacteriol. 2017 May 25;199(12). doi: 10.1128/JB.00844-16. Print 2017 Jun 15.
10
The Chlamydia trachomatis Inclusion Membrane Protein CpoS Counteracts STING-Mediated Cellular Surveillance and Suicide Programs.
Cell Host Microbe. 2017 Jan 11;21(1):113-121. doi: 10.1016/j.chom.2016.12.002. Epub 2016 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验