Suppr超能文献

相似文献

3
Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation.
Cell Microbiol. 2019 Jan;21(1):e12962. doi: 10.1111/cmi.12962. Epub 2018 Oct 30.
7
Host and Bacterial Glycolysis during Infection.
Infect Immun. 2020 Nov 16;88(12). doi: 10.1128/IAI.00545-20.
9
Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited.
Mol Microbiol. 1999 Jul;33(1):177-87. doi: 10.1046/j.1365-2958.1999.01464.x.
10
Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by .
Int J Mol Sci. 2019 Dec 21;21(1):90. doi: 10.3390/ijms21010090.

引用本文的文献

2
Overexpressing the ClpC AAA+ unfoldase accelerates developmental cycle progression in .
mBio. 2025 Jan 8;16(1):e0287024. doi: 10.1128/mbio.02870-24. Epub 2024 Nov 22.
3
The respiratory chain of in urine-like conditions: critical roles of NDH-2 and -terminal oxidases.
Front Microbiol. 2024 Nov 6;15:1479714. doi: 10.3389/fmicb.2024.1479714. eCollection 2024.
4
Tracking Chlamydia and Syphilis in the Detroit Metro Area by Molecular Analysis of Environmental Samples.
Environ Sci Technol. 2024 Oct 8;58(40):17606-17616. doi: 10.1021/acs.est.4c05869. Epub 2024 Sep 30.
5
Metabolism and physiology of pathogenic bacterial obligate intracellular parasites.
Front Cell Infect Microbiol. 2024 Mar 22;14:1284701. doi: 10.3389/fcimb.2024.1284701. eCollection 2024.
7
Genome organization and genomics in : whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny.
Front Cell Infect Microbiol. 2023 May 23;13:1178736. doi: 10.3389/fcimb.2023.1178736. eCollection 2023.
8
Gene gain facilitated endosymbiotic evolution of Chlamydiae.
Nat Microbiol. 2023 Jan;8(1):40-54. doi: 10.1038/s41564-022-01284-9. Epub 2023 Jan 5.
9
Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage.
Dev Cell. 2022 May 23;57(10):1211-1225.e6. doi: 10.1016/j.devcel.2022.03.019. Epub 2022 Apr 20.
10
Inhibition of the futalosine pathway for menaquinone biosynthesis suppresses Chlamydia trachomatis infection.
FEBS Lett. 2021 Dec;595(24):2995-3005. doi: 10.1002/1873-3468.14223. Epub 2021 Nov 16.

本文引用的文献

1
Development of a novel rationally designed antibiotic to inhibit a nontraditional bacterial target.
Can J Physiol Pharmacol. 2017 May;95(5):595-603. doi: 10.1139/cjpp-2016-0505. Epub 2017 Apr 20.
2
Identification of the Catalytic Ubiquinone-binding Site of Sodium-dependent NADH Dehydrogenase: A NOVEL UBIQUINONE-BINDING MOTIF.
J Biol Chem. 2017 Feb 17;292(7):3039-3048. doi: 10.1074/jbc.M116.770982. Epub 2017 Jan 4.
3
Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.
Mol Microbiol. 2017 Mar;103(6):1004-1019. doi: 10.1111/mmi.13603. Epub 2017 Jan 31.
4
Chlamydia cell biology and pathogenesis.
Nat Rev Microbiol. 2016 Jun;14(6):385-400. doi: 10.1038/nrmicro.2016.30. Epub 2016 Apr 25.
5
Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis.
PLoS One. 2016 Feb 12;11(2):e0149011. doi: 10.1371/journal.pone.0149011. eCollection 2016.
7
The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase.
J Biol Chem. 2015 Aug 14;290(33):20009-21. doi: 10.1074/jbc.M115.658773. Epub 2015 May 23.
8
Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication.
Int J Med Microbiol. 2015 May;305(3):378-82. doi: 10.1016/j.ijmm.2015.02.007. Epub 2015 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验