Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W Lombard St, Baltimore, MD 21201, USA.
Breast Cancer Res Treat. 2010 Nov;124(1):121-31. doi: 10.1007/s10549-009-0715-4. Epub 2010 Jan 12.
Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals.
电子顺磁共振(EPR)成像是一种新兴的模式,可以检测和定位体内的顺磁分子探针(所谓的自旋探针)。我们之前证明,氮氧自由基自旋探针可以在浓度超过 100mM 的情况下被包裹在脂质体中,在这种情况下,氮氧自由基的 EPR 信号会发生浓度依赖性猝灭,类似于荧光分子的自猝灭。因此,封装高浓度氮氧自由基的完整脂质体表现出极大衰减的 EPR 光谱信号,并且这种脂质体的内吞作用代表了一种细胞激活的对比产生机制。内吞作用后,包裹的氮氧自由基被释放出来,并在细胞内环境中变得极度稀释。这使氮氧自由基去猝灭,产生强烈的细胞内 EPR 信号。因此,可以将高浓度的氮氧自由基递送到细胞中,同时最小化未内吞的脂质体的背景信号。我们在这里报告,通过利用其表达人表皮生长因子受体 2(HER2),可以选择性地在特定的细胞类型中产生细胞内 EPR 信号。当靶向由封装猝灭氮氧自由基的抗 HER2 免疫脂质体时,新型的 HER2 过表达细胞 Hc7 细胞大量内吞脂质体,与不表达 HER2 的亲本 MCF7 细胞或对照 CV1 细胞形成对比。HER2 依赖性脂质体递送使 Hc7 细胞能够在细胞内积累 750μM 的氮氧自由基。通过使用幻影模型,我们验证了这种浓度的氮氧自由基足以用于 EPR 成像,从而为使用 EPR 成像在动物中可视化 HER2 过表达的 Hc7 肿瘤奠定了基础。