Center for Biomedical Engineering and Technology and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, Maryland 21201, USA.
Drug Metab Dispos. 2011 Oct;39(10):1961-6. doi: 10.1124/dmd.111.039636. Epub 2011 Jul 7.
Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the "self-quenching" phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo.
使用氮氧自由基作为分子探针的电子顺磁共振(EPR)成像是检测和生理特征分析微转移灶的一种很有前途的方法。将氮氧自由基包封在高浓度的抗 HER2 免疫脂质体中,利用氮氧自由基的“自猝灭”现象,可以在 HER2 过表达的乳腺癌细胞中产生强大的 EPR 信号,而来自无关组织或循环脂质体的背景信号最小。我们研究了设计用于长循环时间的氮氧自由基包封在稳定化脂质体中的体内药理学特性。我们表明,氮氧自由基的循环时间可以从几小时延长到几天;这增加了循环中的脂质体比例,从而增强了肿瘤靶向性。此外,包封在稳定化抗 HER2 免疫脂质体中的氮氧自由基可以以微摩尔浓度递送至 HER2 过表达肿瘤,这应该可以通过 EPR 成像检测到。最后,在体内给药后,脂质体包封的氮氧自由基信号也出现在肝脏、脾脏和肾脏中。尽管这些器官在空间上是不同的,并且不会在我们的模型中阻碍肿瘤成像,但了解氮氧自由基信号在这些器官中的保留情况对于进一步提高 EPR 成像中肿瘤与其他组织之间的对比度至关重要。这些结果为使用脂质体递送的氮氧自由基和 EPR 成像来体内可视化肿瘤细胞奠定了基础。