Suppr超能文献

通过格兰杰因果关系测量自主性和涌现性。

Measuring autonomy and emergence via Granger causality.

机构信息

School of Informatics and Sackler Centre for Conciousness Science, University of Sussex, Brighton, BN1 9QJ, UK.

出版信息

Artif Life. 2010 Spring;16(2):179-96. doi: 10.1162/artl.2010.16.2.16204.

Abstract

Concepts of emergence and autonomy are central to artificial life and related cognitive and behavioral sciences. However, quantitative and easy-to-apply measures of these phenomena are mostly lacking. Here, I describe quantitative and practicable measures for both autonomy and emergence, based on the framework of multivariate autoregression and specifically Granger causality. G-autonomy measures the extent to which the knowing the past of a variable helps predict its future, as compared to predictions based on past states of external (environmental) variables. G-emergence measures the extent to which a process is both dependent upon and autonomous from its underlying causal factors. These measures are validated by application to agent-based models of predation (for autonomy) and flocking (for emergence). In the former, evolutionary adaptation enhances autonomy; the latter model illustrates not only emergence but also downward causation. I end with a discussion of relations among autonomy, emergence, and consciousness.

摘要

涌现和自主性的概念是人工生命和相关认知与行为科学的核心。然而,这些现象的定量且易于应用的测量方法大多缺乏。在这里,我基于多元自回归框架,特别是格兰杰因果关系,描述了自主性和涌现的定量且可行的测量方法。G-自主性测量的是,与基于外部(环境)变量过去状态的预测相比,知道变量的过去有助于预测其未来的程度。G-涌现性测量的是一个过程在多大程度上依赖于其潜在的因果因素,同时又具有自主性。这些方法通过应用于捕食(自主性)和群集(涌现性)的基于主体的模型得到验证。在前者中,进化适应增强了自主性;后者模型不仅说明了涌现性,还说明了向下因果关系。最后,我讨论了自主性、涌现性和意识之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验