Suppr超能文献

流感大流行病毒感染小鼠中的 microRNA 表达和毒力。

MicroRNA expression and virulence in pandemic influenza virus-infected mice.

机构信息

Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA.

出版信息

J Virol. 2010 Mar;84(6):3023-32. doi: 10.1128/JVI.02203-09. Epub 2010 Jan 13.

Abstract

The worst known H1N1 influenza pandemic in history resulted in more than 20 million deaths in 1918 and 1919. Although the underlying mechanism causing the extreme virulence of the 1918 influenza virus is still obscure, our previous functional genomics analyses revealed a correlation between the lethality of the reconstructed 1918 influenza virus (r1918) in mice and a unique gene expression pattern associated with severe immune responses in the lungs. Lately, microRNAs have emerged as a class of crucial regulators for gene expression. To determine whether differential expression of cellular microRNAs plays a role in the host response to r1918 infection, we compared the lung cellular "microRNAome" of mice infected by r1918 virus with that of mice infected by a nonlethal seasonal influenza virus, A/Texas/36/91. We found that a group of microRNAs, including miR-200a and miR-223, were differentially expressed in response to influenza virus infection and that r1918 and A/Texas/36/91 infection induced distinct microRNA expression profiles. Moreover, we observed significant enrichment in the number of predicted cellular target mRNAs whose expression was inversely correlated with the expression of these microRNAs. Intriguingly, gene ontology analysis revealed that many of these mRNAs play roles in immune response and cell death pathways, which are known to be associated with the extreme virulence of r1918. This is the first demonstration that cellular gene expression patterns in influenza virus-infected mice may be attributed in part to microRNA regulation and that such regulation may be a contributing factor to the extreme virulence of the r1918.

摘要

历史上最著名的 H1N1 流感大流行在 1918 年和 1919 年导致了超过 2000 万人死亡。尽管导致 1918 年流感病毒极度致命的潜在机制仍然不清楚,但我们之前的功能基因组学分析揭示了重建的 1918 流感病毒(r1918)在小鼠中的致死性与肺部严重免疫反应相关的独特基因表达模式之间存在相关性。最近,microRNAs 已成为一类关键的基因表达调控因子。为了确定细胞 microRNAs 的差异表达是否在宿主对 r1918 感染的反应中发挥作用,我们比较了 r1918 病毒感染和非致死性季节性流感病毒 A/Texas/36/91 感染的小鼠肺部细胞“microRNAome”。我们发现,一组 microRNAs,包括 miR-200a 和 miR-223,在流感病毒感染时表现出差异表达,并且 r1918 和 A/Texas/36/91 感染诱导了不同的 microRNA 表达谱。此外,我们观察到预测的细胞靶 mRNA 的数量显著增加,这些 mRNA 的表达与这些 microRNAs 的表达呈负相关。有趣的是,基因本体分析表明,这些 mRNA 中的许多在免疫反应和细胞死亡途径中发挥作用,这些途径与 r1918 的极端致命性有关。这是首次证明感染流感病毒的小鼠中的细胞基因表达模式部分归因于 microRNA 调节,并且这种调节可能是 r1918 极度致命的一个因素。

相似文献

1
MicroRNA expression and virulence in pandemic influenza virus-infected mice.
J Virol. 2010 Mar;84(6):3023-32. doi: 10.1128/JVI.02203-09. Epub 2010 Jan 13.
2
MicroRNA expression profile of mouse lung infected with 2009 pandemic H1N1 influenza virus.
PLoS One. 2013 Sep 16;8(9):e74190. doi: 10.1371/journal.pone.0074190. eCollection 2013.
3
Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses.
Virology. 2011 Dec 20;421(2):105-13. doi: 10.1016/j.virol.2011.09.011. Epub 2011 Oct 13.
4
Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus.
Nature. 2006 Oct 5;443(7111):578-81. doi: 10.1038/nature05181. Epub 2006 Sep 27.
5
Functional Evolution of the 2009 Pandemic H1N1 Influenza Virus NS1 and PA in Humans.
J Virol. 2018 Sep 12;92(19). doi: 10.1128/JVI.01206-18. Print 2018 Oct 1.
7
MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2.
J Virol. 2018 Sep 12;92(19). doi: 10.1128/JVI.01057-18. Print 2018 Oct 1.
8
The NS1 protein of the 1918 pandemic influenza virus blocks host interferon and lipid metabolism pathways.
J Virol. 2009 Oct;83(20):10557-70. doi: 10.1128/JVI.00330-09. Epub 2009 Aug 12.
9
Inefficient control of host gene expression by the 2009 pandemic H1N1 influenza A virus NS1 protein.
J Virol. 2010 Jul;84(14):6909-22. doi: 10.1128/JVI.00081-10. Epub 2010 May 5.

引用本文的文献

2
Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity.
Hum Vaccin Immunother. 2023 Dec 15;19(3):2267295. doi: 10.1080/21645515.2023.2267295. Epub 2023 Oct 26.
3
Screening and identification of specific cluster miRNAs in N2a cells infected by H7N9 virus.
Virus Genes. 2023 Oct;59(5):716-722. doi: 10.1007/s11262-023-01996-y. Epub 2023 Jul 3.
4
Inhibition of miR-200b-3p confers broad-spectrum resistance to viral infection by targeting TBK1.
mBio. 2023 Aug 31;14(4):e0086723. doi: 10.1128/mbio.00867-23. Epub 2023 May 24.
5
Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection.
Int J Mol Sci. 2023 May 3;24(9):8175. doi: 10.3390/ijms24098175.
6
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals.
Int J Mol Sci. 2022 Sep 11;23(18):10536. doi: 10.3390/ijms231810536.
7
MicroRNA let-7 Suppresses Influenza A Virus Infection by Targeting RPS16 and Enhancing Type I Interferon Response.
Front Cell Infect Microbiol. 2022 Jul 7;12:904775. doi: 10.3389/fcimb.2022.904775. eCollection 2022.
8
Genome-wide identification of chicken bursae of Fabricius miRNAs in response to very virulent infectious bursal disease virus.
Arch Virol. 2022 Sep;167(9):1855-1864. doi: 10.1007/s00705-022-05496-6. Epub 2022 Jun 25.
9
Role of Exosomal miR-223 in Chronic Skeletal Muscle Inflammation.
Orthop Surg. 2022 Apr;14(4):644-651. doi: 10.1111/os.13232. Epub 2022 Mar 16.
10
Contribution of Host miRNA-223-3p to SARS-CoV-Induced Lung Inflammatory Pathology.
mBio. 2022 Apr 26;13(2):e0313521. doi: 10.1128/mbio.03135-21. Epub 2022 Mar 1.

本文引用的文献

2
A novel and universal method for microRNA RT-qPCR data normalization.
Genome Biol. 2009;10(6):R64. doi: 10.1186/gb-2009-10-6-r64. Epub 2009 Jun 16.
3
MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression.
J Immunol. 2009 Apr 15;182(8):4994-5002. doi: 10.4049/jimmunol.0803560.
4
Nuclear hormone receptor regulation of microRNAs controls developmental progression.
Science. 2009 Apr 3;324(5923):95-8. doi: 10.1126/science.1164899.
5
TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5306-11. doi: 10.1073/pnas.0900655106. Epub 2009 Mar 11.
6
Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia.
Blood. 2009 May 14;113(20):4914-7. doi: 10.1182/blood-2008-11-189845. Epub 2009 Feb 26.
7
The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.
Nature. 2009 Apr 16;458(7240):914-8. doi: 10.1038/nature07745. Epub 2009 Feb 4.
8
miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities.
Leukemia. 2009 Jun;23(6):1159-63. doi: 10.1038/leu.2008.377. Epub 2009 Jan 22.
10
Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):588-92. doi: 10.1073/pnas.0806959106. Epub 2008 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验