Suppr超能文献

使用张量的连续混合进行特征保留图像平滑处理。

Feature Preserving Image Smoothing Using a Continuous Mixture of Tensors.

作者信息

Subakan Ozlem, Jian Bing, Vemuri Baba C, Vallejos C Eduardo

机构信息

Department of CISE University of Florida.

出版信息

Proc IEEE Int Conf Comput Vis. 2007 Oct 14;11:nihpa163297. doi: 10.1109/ICCV.2007.4408918.

Abstract

Many computer vision and image processing tasks require the preservation of local discontinuities, terminations and bifurcations. Denoising with feature preservation is a challenging task and in this paper, we present a novel technique for preserving complex oriented structures such as junctions and corners present in images. This is achieved in a two stage process namely, (1) All image data are pre-processed to extract local orientation information using a steerable Gabor filter bank. The orientation distribution at each lattice point is then represented by a continuous mixture of Gaussians. The continuous mixture representation can be cast as the Laplace transform of the mixing density over the space of positive definite (covariance) matrices. This mixing density is assumed to be a parameterized distribution, namely, a mixture of Wisharts whose Laplace transform is evaluated in a closed form expression called the Rigaut type function, a scalar-valued function of the parameters of the Wishart distribution. Computation of the weights in the mixture Wisharts is formulated as a sparse deconvolution problem. (2) The feature preserving denoising is then achieved via iterative convolution of the given image data with the Rigaut type function. We present experimental results on noisy data, real 2D images and 3D MRI data acquired from plant roots depicting bifurcating roots. Superior performance of our technique is depicted via comparison to the state-of-the-art anisotropic diffusion filter.

摘要

许多计算机视觉和图像处理任务都需要保留局部的不连续性、端点和分支。带特征保留的去噪是一项具有挑战性的任务,在本文中,我们提出了一种新颖的技术,用于保留图像中存在的诸如交叉点和角点等复杂的定向结构。这是通过一个两阶段的过程实现的,即:(1) 所有图像数据都经过预处理,使用可操纵的伽柏滤波器组提取局部方向信息。然后,每个格点处的方向分布由高斯分布的连续混合来表示。连续混合表示可以看作是正定(协方差)矩阵空间上混合密度的拉普拉斯变换。这种混合密度被假定为一种参数化分布,即威沙特分布的混合,其拉普拉斯变换通过一个称为里高特型函数的闭式表达式来计算,里高特型函数是威沙特分布参数的标量值函数。混合威沙特分布中权重的计算被表述为一个稀疏反卷积问题。(2) 然后,通过将给定的图像数据与里高特型函数进行迭代卷积来实现特征保留去噪。我们展示了对有噪声数据、真实二维图像以及从描绘分叉根的植物根获取的三维磁共振成像数据的实验结果。通过与最先进的各向异性扩散滤波器进行比较,展示了我们技术的卓越性能。

相似文献

3
Image Segmentation via Convolution of a Level-Set Function with a Rigaut Kernel.基于水平集函数与里 Gaut 核卷积的图像分割
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008;2008:1-6. doi: 10.1109/CVPR.2008.4587460.
6
A CONTINUOUS MIXTURE OF TENSORS MODEL FOR DIFFUSION-WEIGHTED MR SIGNAL RECONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2007 Apr 12;4:772-775. doi: 10.1109/ISBI.2007.356966.
8
Adaptive smoothing via contextual and local discontinuities.通过上下文和局部不连续性进行自适应平滑处理。
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1552-67. doi: 10.1109/TPAMI.2005.190.
9
[Progress in filters for denoising cryo-electron microscopy images].[用于冷冻电子显微镜图像去噪的滤波器研究进展]
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.
10
Understanding Symmetric Smoothing Filters: A Gaussian Mixture Model Perspective.理解对称平滑滤波器:高斯混合模型视角。
IEEE Trans Image Process. 2017 Nov;26(11):5107-5121. doi: 10.1109/TIP.2017.2731208. Epub 2017 Jul 24.

引用本文的文献

2
Color Image Segmentation in a Quaternion Framework.四元数框架下的彩色图像分割
Energy Minimization Methods Comput Vis Pattern Recognit. 2009 Jan 1;5681(2009):401-414. doi: 10.1007/978-3-642-03641-5_30.
3
Image Segmentation via Convolution of a Level-Set Function with a Rigaut Kernel.基于水平集函数与里 Gaut 核卷积的图像分割
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008;2008:1-6. doi: 10.1109/CVPR.2008.4587460.

本文引用的文献

1
Anomalous diffusion of water in biological tissues.生物组织中水分子的反常扩散。
Biophys J. 1996 Jun;70(6):2950-8. doi: 10.1016/S0006-3495(96)79865-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验