Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
Protein Sci. 2010 Mar;19(3):603-16. doi: 10.1002/pro.339.
Understanding the key factors that influence the interaction preferences of amino acids in the folding of proteins have remained a challenge. Here we present a knowledge-based approach for determining the effective interactions between amino acids based on amino acid type, their secondary structure, and the contact based environment that they find themselves in the native state structure as measured by their number of neighbors. We find that the optimal information is approximately encoded in a 60 x 60 matrix describing the 20 types of amino acids in three distinct secondary structures (helix, beta strand, and loop). We carry out a clustering scheme to understand the similarity between these interactions and to elucidate a nonredundant set. We demonstrate that the inferred energy parameters can be used for assessing the fit of a given sequence into a putative native state structure.
了解影响蛋白质折叠中氨基酸相互作用偏好的关键因素一直是一个挑战。在这里,我们提出了一种基于知识的方法,用于根据氨基酸类型、它们的二级结构以及它们在天然状态结构中所处的基于接触的环境来确定氨基酸之间的有效相互作用,这些环境由它们的邻居数量来衡量。我们发现,最佳信息大约编码在一个 60x60 的矩阵中,该矩阵描述了三种不同二级结构(螺旋、β 链和环)中的 20 种氨基酸类型。我们进行了聚类方案,以了解这些相互作用之间的相似性,并阐明一组非冗余的相互作用。我们证明,推断出的能量参数可用于评估给定序列与假定的天然状态结构的拟合程度。