Suppr超能文献

基于病毒逃逸启发的结构导向双诱饵蛋白生物传感器设计框架。

Viral escape-inspired framework for structure-guided dual bait protein biosensor design.

作者信息

Teoh Yee Chuen, Noor Mohammed Sakib, Aghakhani Sina, Girton Jack, Hu Guiping, Chowdhury Ratul

机构信息

Department of Computer Science, Iowa State University, Ames, Iowa, United States of America.

Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS Comput Biol. 2025 Apr 15;21(4):e1012964. doi: 10.1371/journal.pcbi.1012964. eCollection 2025 Apr.

Abstract

A generalizable computational platform, CTRL-V (Computational TRacking of Likely Variants), is introduced to design selective binding (dual bait) biosensor proteins. The iteratively evolving receptor binding domain (RBD) of SARS-CoV-2 spike protein has been construed as a model dual bait biosensor which has iteratively evolved to distinguish and selectively bind to human entry receptors and avoid binding neutralizing antibodies. Spike RBD prioritizes mutations that reduce antibody binding while enhancing/ retaining binding with the ACE2 receptor. CTRL-V's through iterative design cycles was shown to pinpoint 20% (of the 39) reported SARS-CoV-2 point mutations across 30 circulating, infective strains as responsible for immune escape from commercial antibody LY-CoV1404. CTRL-V successfully identifies ~70% (five out of seven) single point mutations (371F, 373P, 440K, 445H, 456L) in the latest circulating KP.2 variant and offers detailed structural insights to the escape mechanism. While other data-driven viral escape variant predictor tools have shown promise in predicting potential future viral variants, they require massive amounts of data to bypass the need for physics of explicit biochemical interactions. Consequently, they cannot be generalized for other protein design applications. The publicly availably viral escape data was leveraged as in vivo anchors to streamline a computational workflow that can be generalized for dual bait biosensor design tasks as exemplified by identifying key mutational loci in Raf kinase that enables it to selectively bind Ras and Rap1a GTP. We demonstrate three versions of CTRL-V which use a combination of integer optimization, stochastic sampling by PyRosetta, and deep learning-based ProteinMPNN for structure-guided biosensor design.

摘要

引入了一种通用的计算平台CTRL-V(可能变异体的计算追踪)来设计选择性结合(双诱饵)生物传感器蛋白。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白的迭代进化受体结合域(RBD)被构建为一种模型双诱饵生物传感器,它通过迭代进化以区分并选择性结合人类进入受体,同时避免结合中和抗体。刺突RBD优先选择那些减少抗体结合同时增强/保留与血管紧张素转换酶2(ACE2)受体结合的突变。通过迭代设计循环,CTRL-V能够精准定位30种循环感染菌株中(39种中的)20%已报道的SARS-CoV-2点突变,这些突变导致了对商业抗体LY-CoV1404的免疫逃逸。CTRL-V成功识别了最新循环的KP.2变体中约70%(七个中的五个)的单点突变(371F、373P、440K、445H、456L),并为逃逸机制提供了详细的结构见解。虽然其他数据驱动的病毒逃逸变异体预测工具在预测未来潜在病毒变体方面显示出了前景,但它们需要大量数据来绕过对明确生化相互作用物理原理的需求。因此,它们不能推广到其他蛋白质设计应用中。公开可用的病毒逃逸数据被用作体内锚点,以简化一种计算工作流程,该流程可推广到双诱饵生物传感器设计任务,例如识别Raf激酶中的关键突变位点,使其能够选择性结合Ras和Rap1a GTP。我们展示了CTRL-V的三个版本,它们结合了整数优化、PyRosetta的随机采样以及基于深度学习的ProteinMPNN进行结构导向的生物传感器设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8972/12021294/c67734ea01eb/pcbi.1012964.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验