Suppr超能文献

大肠杆菌MalK蛋白在麦芽糖转运、调节和诱导物排除方面的活性可通过突变加以区分。

The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations.

作者信息

Kühnau S, Reyes M, Sievertsen A, Shuman H A, Boos W

机构信息

Department of Biology, University of Konstanz, Federal Republic of Germany.

出版信息

J Bacteriol. 1991 Apr;173(7):2180-6. doi: 10.1128/jb.173.7.2180-2186.1991.

Abstract

The maltose regulon consists of several genes encoding proteins involved in the uptake and utilization of maltose and maltodextrins. Five proteins make up a periplasmic binding-protein-dependent active transport system. One of these proteins, MalK, contains an ATP-binding site and is thought to couple the hydrolysis of ATP to the accumulation of substrate. Beside its function in transport, MalK has two additional roles: (i) it negatively regulates mal regulon expression and (ii) it serves as the target for regulation of transport activity by enzyme IIIGlc of the phosphotransferase system. To determine whether the three functions of MalK are separable, we have isolated and characterized three classes of malK mutations. The first type (class I) exhibited constitutive mal gene expression but still allowed normal transport of maltose; the second type (class II) lacked the ability to transport maltose but retained the ability to repress the mal genes. Class I mutations were localized in the last third of the gene, at amino acids 267 (Trp to Gly) and 346 (Gly to Ser). Mutations of class II were found at the positions 137 (Gly to Ala), 140 (delta Gln Arg), and 158 (Asp to Asn). These mutations are near or within the region of MalK that exhibits extensive homology to the B site of an ATP-binding fold. In addition, site-directed mutagenesis was used to add or remove one amino acid in the A site of the ATP-binding fold. Plasmids carrying these mutations also behaved as class II mutants. The third class of malK mutations resulted in resistance to the enzyme IIIGlc-mediated inhibitory effects of alpha-methylglucoside. These mutations did not interfere with the regulatory function of MalK. One of these mutations (exchanging a serine at position 282 for leucine) is located in a short stretch of amino acids that exhibits homology to a sequence in the Escherichia coli Lac permease in which alpha-methylglucoside-resistant mutations have been found.

摘要

麦芽糖调节子由几个基因组成,这些基因编码参与麦芽糖和麦芽糊精摄取与利用的蛋白质。五种蛋白质构成了一个依赖周质结合蛋白的主动运输系统。其中一种蛋白质MalK含有一个ATP结合位点,被认为将ATP水解与底物积累相偶联。除了其在运输中的功能外,MalK还有另外两个作用:(i)它负向调节麦芽糖调节子的表达;(ii)它作为磷酸转移酶系统的酶IIIGlc对运输活性进行调节的靶点。为了确定MalK的这三种功能是否可分离,我们分离并鉴定了三类malK突变。第一类(I类)表现出组成型的麦芽糖基因表达,但仍允许麦芽糖正常运输;第二类(II类)缺乏运输麦芽糖的能力,但保留了抑制麦芽糖基因的能力。I类突变定位在基因的最后三分之一处,位于氨基酸267(色氨酸突变为甘氨酸)和346(甘氨酸突变为丝氨酸)处。II类突变出现在位置137(甘氨酸突变为丙氨酸)、140(谷氨酰胺缺失突变为精氨酸)和158(天冬氨酸突变为天冬酰胺)处。这些突变位于MalK中与ATP结合结构域的B位点具有广泛同源性的区域附近或内部。此外,定点诱变被用于在ATP结合结构域的A位点添加或去除一个氨基酸。携带这些突变的质粒也表现为II类突变体。第三类malK突变导致对酶IIIGlc介导的α-甲基葡萄糖苷抑制作用产生抗性。这些突变不干扰MalK的调节功能。其中一个突变(将位置282的丝氨酸替换为亮氨酸)位于一段短的氨基酸序列中,该序列与大肠杆菌乳糖通透酶中的一个序列具有同源性,在该序列中已发现α-甲基葡萄糖苷抗性突变。

相似文献

4
Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
J Bacteriol. 1997 Sep;179(17):5458-64. doi: 10.1128/jb.179.17.5458-5464.1997.
5
MalFGK complex assembly and transport and regulatory characteristics of MalK insertion mutants.
J Bacteriol. 1997 Feb;179(4):1337-43. doi: 10.1128/jb.179.4.1337-1343.1997.

引用本文的文献

1
Structurally diverse C-terminal accessory domains in type I ABC importers reveal distinct regulatory mechanisms.
Structure. 2025 May 1;33(5):843-857. doi: 10.1016/j.str.2025.02.014. Epub 2025 Mar 24.
2
Fluoroquinolone Persistence in Requires DNA Repair despite Differing between Starving Populations.
Microorganisms. 2022 Jan 26;10(2):286. doi: 10.3390/microorganisms10020286.
3
A Glycerol ABC Transporter Involved in Pathogenicity.
Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.03112-20.
6
An integrated transport mechanism of the maltose ABC importer.
Res Microbiol. 2019 Nov-Dec;170(8):321-337. doi: 10.1016/j.resmic.2019.09.004. Epub 2019 Sep 24.
7
A Unique ATPase, ArtR (PA4595), Represses the Type III Secretion System in .
Front Microbiol. 2019 Mar 21;10:560. doi: 10.3389/fmicb.2019.00560. eCollection 2019.

本文引用的文献

3
Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination.
Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963-5. doi: 10.1073/pnas.80.13.3963.
4
Sequence of the lactose permease gene.
Nature. 1980 Feb 7;283(5747):541-5. doi: 10.1038/283541a0.
5
Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems.
Biochim Biophys Acta. 1983 Aug 11;737(3-4):443-78. doi: 10.1016/0304-4157(83)90009-6.
6
Transposon Tn10-dependent expression of the lamB gene in Escherichia coli.
J Bacteriol. 1984 Jul;159(1):93-9. doi: 10.1128/jb.159.1.93-99.1984.
8
Sequence of the malK gene in E.coli K12.
Nucleic Acids Res. 1982 Nov 25;10(22):7449-58. doi: 10.1093/nar/10.22.7449.
9
Location of the maltose A and B loci on the genetic map of Escherichia coli.
J Bacteriol. 1966 Oct;92(4):1083-9. doi: 10.1128/jb.92.4.1083-1089.1966.
10
Conditional mutator gene in Escherichia coli: isolation, mapping, and effector studies.
J Bacteriol. 1974 Feb;117(2):477-87. doi: 10.1128/jb.117.2.477-487.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验