Suppr超能文献

多靶点 SELEX 的数学分析。

A mathematical analysis of multiple-target SELEX.

机构信息

Department of Mathematics, Iowa State University, Ames, IA 50011, USA.

出版信息

Bull Math Biol. 2010 Oct;72(7):1623-65. doi: 10.1007/s11538-009-9491-x. Epub 2010 Jan 14.

Abstract

SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a mixture of nucleic acids can be fractionated with the goal of identifying those with specific biochemical activities. One combines the mixture with a specific target molecule and then separates the target-NA complex from the resulting reactions. The target-NA complex is separated from the unbound NA by mechanical means (such as by filtration), the NA is eluted from the complex, amplified by PCR (polymerase chain reaction), and the process repeated. After several rounds, one should be left with the nucleic acids that best bind to the target. The problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739-761, 1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11-25, 2007), a mathematical analysis of the process was given. In Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998), multiple target SELEX was considered. It was assumed that each target has a single nucleic acid binding site that permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998) using the same assumptions. The iteration scheme is shown to be convergent and a simplified algorithm is given. Our interest here is in the behavior of the multiple target SELEX process as a discrete "time" dynamical system. Our goal is to characterize the limiting states and their dependence on the initial distribution of nucleic acid and target fraction components. (In multiple target SELEX, we vary the target component fractions, but not their concentrations, as fixed and the initial pool of nucleic acids as a variable starting condition). Given N nucleic acids and a target consisting of M subtarget component species, there is an M × N matrix of affinities, the (i,j) entry corresponding to the affinity of the jth nucleic acid for the ith subtarget. We give a structure condition on this matrix that is equivalent to the following statement: For any initial pool of nucleic acids such that all N species are represented, the dynamical system defined by the multiple target SELEX process will converge to a unique subset of nucleic acids, each of whose concentrations depend only upon the total nucleic acid concentration, the initial fractional target distribution (both of which are assumed to be the same from round to round), and the overall limiting association constant. (The overall association constant is the equilibrium constant for the system of MN reactions when viewed as a composite single reaction). This condition is equivalent to the statement that every member of a certain family of chemical potentials at infinite target dilution can have at most one critical point. (The condition replaces the statement for single target SELEX that the dynamical system generated via the process always converges to a pool that contains only the nucleic acid that binds best to the target). This suggests that the effectiveness of multiple target SELEX as a separation procedure may not be as useful as single target SELEX unless the thermodynamic properties of these chemical potentials are well understood.

摘要

SELEX(指数富集的配体系统进化)是一种将核酸混合物进行分离的方法,其目的是鉴定具有特定生化活性的核酸。将混合物与特定的靶分子结合,然后将靶-NA 复合物与反应产物分离。通过机械手段(如过滤)将靶-NA 复合物与未结合的 NA 分离,然后从复合物中洗脱 NA,通过 PCR(聚合酶链式反应)扩增,并重复该过程。经过几轮后,应该可以得到与靶分子结合最好的核酸。这个问题最初是由 Irvine 等人在《分子生物学杂志》(J. Mol. Biol. 222:739-761, 1991)中提出的数学公式化。在 Levine 和 Nilsen-Hamilton(计算生物学化学,2007 年,第 31 卷:11-25 页)中,对该过程进行了数学分析。在 Vant-Hull 等人(分子生物学杂志,1998 年,第 278 卷:579-597 页)中,考虑了多个靶标 SELEX。假设每个靶标都有一个单一的核酸结合位点,允许不超过一个核酸占据该位点。在这里,我们使用相同的假设重新研究了 Vant-Hull 等人(分子生物学杂志,1998 年,第 278 卷:579-597 页)。迭代方案被证明是收敛的,并给出了一个简化的算法。我们在这里的兴趣在于将多靶标 SELEX 过程作为离散的“时间”动力系统来研究。我们的目标是描述极限状态及其对核酸和靶标分数成分初始分布的依赖性。(在多靶标 SELEX 中,我们改变靶标成分分数,而不是固定靶标浓度,将初始核酸池作为可变起始条件)。给定 N 个核酸和一个由 M 个子靶成分组成的靶标,有一个 M×N 的亲和力矩阵,(i,j)项对应于第 j 个核酸与第 i 个子靶的亲和力。我们给出了这个矩阵的一个结构条件,该条件相当于以下陈述:对于任何初始的核酸池,只要所有 N 种都有代表,由多靶标 SELEX 过程定义的动力系统将收敛到一个独特的核酸子集,其每个浓度仅取决于总核酸浓度、初始分数靶分布(从一轮到下一轮都是相同的)以及整体的总结合常数。(整体结合常数是当将 MN 反应系统视为一个复合的单一反应时的平衡常数)。这个条件相当于这样一个陈述,即在无限稀释的靶标下,某个化学势家族的每个成员最多只能有一个临界点。(该条件取代了单靶标 SELEX 的表述,即通过该过程生成的动力系统总是收敛到仅包含与靶标结合最好的核酸的池)。这表明,除非这些化学势的热力学性质得到很好的理解,否则多靶标 SELEX 作为一种分离方法的有效性可能不如单靶标 SELEX 有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验