Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1166-71. doi: 10.1073/pnas.0911004107. Epub 2009 Dec 28.
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.
HIV-1 的病毒刺突由三个非共价连接的 gp120 包膜糖蛋白和三个 gp41 跨膜分子组成。病毒进入是由细胞表面的 CD4 受体结合启动的,这诱导 gp120 发生大的构象变化。这些变化不仅为受体触发的进入提供了模型,而且影响了刺突对药物和抗体介导的中和作用的敏感性。虽然晶体结构和冷冻电镜断层扫描已经可视化了 CD4 诱导的构象变化的一些细节,但以前的原子水平特征描述中缺少 gp120 与 gp41 相互作用的关键区域。在这里,我们确定了 HIV-1 gp120 核心的晶体结构,该结构在其与 CD4 结合的状态下具有完整的 gp41 相互作用区域,将该结构与未结合配体和结合抗体的形式进行比较,以确定结构不变和可塑的成分,并使用配体定向冷冻电镜断层扫描来定义病毒刺突背景下的成分移动性。与 gp41 界面相邻的新定义的 gp120 元素完成了一个 7 股β-三明治,其构象不变。从三明治伸出的环突形成三个拓扑上独立的 - 并且结构上可塑的 - 层,由高度糖基化的 gp120 外域封顶。晶体结构、冷冻电镜断层扫描和层间化学性质与一种机制一致,即这些层作为形状改变的间隔物起作用,促进外域与 gp41 相关的β-三明治之间的运动,并提供用于免疫逃逸的构象多样性。因此,“分层”的 gp120 结构允许病毒进入和免疫逃逸所需的替代糖蛋白构象之间的运动,而β-三明治夹保持 gp120-gp41 相互作用并调节 gp41 转变。