Suppr超能文献

红细胞膜波动的空间分辨本征模分解对 ATP 在闪烁中的作用提出了质疑。

Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering.

机构信息

Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland.

出版信息

PLoS One. 2012;7(8):e40667. doi: 10.1371/journal.pone.0040667. Epub 2012 Aug 10.

Abstract

Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.

摘要

红细胞(RBC)具有独特的可逆形状变形能力,这对于其功能和存活至关重要,主要表现为细胞膜波动(CMF)。为了更好地了解这些在某些病理状态下(包括血液疾病)发生改变的显著生物力学膜特性,人们对这些 CMF 进行了大量研究。特别是关于 CMF 的热或代谢起源的讨论,在过去导致了大量的研究和建模。然而,CMF 的起源仍存在争议。在本文中,我们通过将数字全息显微镜(DHM)与成像数据的正交子空间分解相结合,对 RBC 的 CMF 进行了分析。这些子空间分量可以可靠地识别和量化,作为最小化 RBC 结构变形能的 CMF 的本征模基础。通过将观察到的波动模式与理论动态模型拟合,我们发现 CMF 主要受膜弯曲弹性的控制,而剪切和拉伸弹性对圆盘形 RBC 的膜波动只有很小的影响。此外,我们的实验表明,ATP 作为 CMF 驱动力的作用值得怀疑。然而,ATP 似乎是维持导致热激发 CMF 的 RBC 膜独特生物力学特性所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50bc/3416845/3294021386dc/pone.0040667.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验