Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea.
Nat Nanotechnol. 2010 Feb;5(2):148-53. doi: 10.1038/nnano.2009.456. Epub 2010 Jan 17.
Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO(2)/Pt system during resistive switching. In situ current-voltage and low-temperature (approximately 130 K) conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications.
金属氧化物中的电阻开关可能成为下一代非易失性存储器的基础。有人认为,几种与技术相关的氧化物材料的高导电态电流通过局部细丝流动,但这些细丝仅被间接表征,限制了我们对开关机制的理解。在这里,我们使用高分辨率透射电子显微镜直接探测 Pt/TiO(2)/Pt 系统中的纳米细丝在电阻开关过程中的情况。原位电流-电压和低温(约 130 K)电导率测量证实,开关是通过 Ti(n)O(2n-1)(或所谓的 Magnéli 相)细丝的形成和中断来实现的。对这些细丝的组成、结构和尺寸的了解将为揭示氧化物薄膜电阻开关的完整机制提供基础,并有助于指导此类薄膜在应用中的稳定性和可扩展性的研究。