Suppr超能文献

两种开放状态具有分支通道视紫红质-2 光循环中的质子选择性。

Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle.

机构信息

Institute for Biology, Humboldt-Universität zu Berlin, Germany.

出版信息

Biophys J. 2010 Mar 3;98(5):753-61. doi: 10.1016/j.bpj.2009.10.052.

Abstract

Channelrhodopsins are light-gated ion channels that mediate vision in phototactic green algae like Chlamydomonas. In neurosciences, channelrhodopsins are widely used to light-trigger action potentials in transfected cells. All known channelrhodopsins preferentially conduct H(+). Previous studies have indicated the existence of an early and a late conducting state within the channelrhodopsin photocycle. Here, we show that for channelrhodopsin-2 expressed in Xenopus oocytes and HEK cells, the two open states have different ion selectivities that cause changes in the channelrhodopsin-2 reversal voltage during a light pulse. An enzyme kinetic algorithm was applied to convert the reversal voltages in various ionic conditions to conductance ratios for H(+) and divalent cations (Ca(2+) and/or Mg(2+)), as compared to monovalent cations (Na(+) and/or K(+)). Compared to monovalent cation conductance, the H(+) conductance, alpha, is approximately 3 x 10(6) and the divalent cation conductance, beta, is approximately 0.01 in the early conducting state. In the stationary mixture of the early and late states, alpha is larger and beta smaller, both by a factor of approximately 2. The results suggest that the ionic basis of light perception in Chlamydomonas is relatively nonspecific in the beginning of a light pulse but becomes more selective for protons during longer light exposures.

摘要

通道视紫红质是一种光门控离子通道,介导了如衣藻等趋光性绿藻的视觉反应。在神经科学中,通道视紫红质被广泛用于转染细胞的光触发动作电位。所有已知的通道视紫红质都优先传导 H(+)。先前的研究表明通道视紫红质光循环中有早期和晚期的导通状态。在这里,我们表明对于在非洲爪蟾卵母细胞和 HEK 细胞中表达的通道视紫红质-2,这两个开放状态具有不同的离子选择性,这会导致在光脉冲期间通道视紫红质-2反转电压的变化。我们应用了酶动力学算法,将各种离子条件下的反转电压转换为 H(+)和二价阳离子(Ca(2+)和/或 Mg(2+))与单价阳离子(Na(+)和/或 K(+))的电导比。与单价阳离子电导相比,早期导通状态下的 H(+)电导 alpha 约为 3 x 10(6),二价阳离子电导 beta 约为 0.01。在早期和晚期状态的稳态混合物中,alpha 增大而 beta 减小,均约为 2 倍。结果表明,在光脉冲的开始,衣藻中光感知的离子基础相对非特异性,但在更长时间的光照下,对质子的选择性更高。

相似文献

1
Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle.
Biophys J. 2010 Mar 3;98(5):753-61. doi: 10.1016/j.bpj.2009.10.052.
2
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5. doi: 10.1073/pnas.1936192100. Epub 2003 Nov 13.
3
Ion selectivity and competition in channelrhodopsins.
Biophys J. 2013 Jul 2;105(1):91-100. doi: 10.1016/j.bpj.2013.05.042.
4
Photoactivation of channelrhodopsin.
J Biol Chem. 2008 Jan 18;283(3):1637-1643. doi: 10.1074/jbc.M708039200. Epub 2007 Nov 9.
6
Multiple photocycles of channelrhodopsin.
Biophys J. 2005 Dec;89(6):3911-8. doi: 10.1529/biophysj.105.069716. Epub 2005 Sep 16.
7
Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9380-9389. doi: 10.1073/pnas.1818707116. Epub 2019 Apr 19.
8
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28.
9
Action potentials in Xenopus oocytes triggered by blue light.
J Gen Physiol. 2020 May 4;152(5). doi: 10.1085/jgp.201912489.
10
Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9512-E9519. doi: 10.1073/pnas.1710702114. Epub 2017 Oct 25.

引用本文的文献

1
SignatureFinder enables sequence mining to identify cobalamin-dependent photoreceptor proteins.
FEBS J. 2025 Feb;292(3):635-652. doi: 10.1111/febs.17377. Epub 2024 Dec 24.
2
Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2.
PLoS One. 2024 Sep 6;19(9):e0309553. doi: 10.1371/journal.pone.0309553. eCollection 2024.
3
Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells.
Mol Ther. 2023 May 3;31(5):1480-1495. doi: 10.1016/j.ymthe.2023.03.013. Epub 2023 Mar 16.
4
Double Two-State Opsin Model With Autonomous Parameter Inference.
Front Comput Neurosci. 2021 Jun 16;15:688331. doi: 10.3389/fncom.2021.688331. eCollection 2021.
6
Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9380-9389. doi: 10.1073/pnas.1818707116. Epub 2019 Apr 19.
8
Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.
Br J Pharmacol. 2018 Jun;175(11):2028-2045. doi: 10.1111/bph.14183. Epub 2018 Apr 17.
10
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28.

本文引用的文献

1
Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
Biophys J. 2009 Mar 4;96(5):1803-14. doi: 10.1016/j.bpj.2008.11.034.
2
Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
Photochem Photobiol. 2009 Mar-Apr;85(2):564-9. doi: 10.1111/j.1751-1097.2008.00519.x. Epub 2009 Jan 19.
3
Photocycles of channelrhodopsin-2.
Photochem Photobiol. 2009 Jan-Feb;85(1):400-11. doi: 10.1111/j.1751-1097.2008.00460.x.
4
Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
J Biol Chem. 2008 Dec 12;283(50):35033-41. doi: 10.1074/jbc.M806353200. Epub 2008 Oct 16.
5
Algal sensory photoreceptors.
Annu Rev Plant Biol. 2008;59:167-89. doi: 10.1146/annurev.arplant.59.032607.092847.
6
Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
Nat Neurosci. 2008 Jun;11(6):631-3. doi: 10.1038/nn.2120. Epub 2008 Apr 23.
7
Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function.
J Mol Biol. 2008 Jan 18;375(3):686-94. doi: 10.1016/j.jmb.2007.10.072. Epub 2007 Nov 1.
8
Photoactivation of channelrhodopsin.
J Biol Chem. 2008 Jan 18;283(3):1637-1643. doi: 10.1074/jbc.M708039200. Epub 2007 Nov 9.
9
Circuit-breakers: optical technologies for probing neural signals and systems.
Nat Rev Neurosci. 2007 Aug;8(8):577-81. doi: 10.1038/nrn2192.
10
Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels.
Neurosci Res. 2006 Feb;54(2):85-94. doi: 10.1016/j.neures.2005.10.009. Epub 2005 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验