Suppr超能文献

通过紫外可见光谱和傅里叶变换红外光谱监测光激活视紫红质-2的结构变化。

Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.

作者信息

Ritter Eglof, Stehfest Katja, Berndt Andre, Hegemann Peter, Bartl Franz J

机构信息

Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.

出版信息

J Biol Chem. 2008 Dec 12;283(50):35033-41. doi: 10.1074/jbc.M806353200. Epub 2008 Oct 16.

Abstract

Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.

摘要

通道视紫红质-2(ChR2)是一种微生物型视紫红质,也是一种光门控阳离子通道,可控制衣藻的趋光性。我们在COS细胞中表达ChR2,对其进行纯化,随后通过闪光光解、紫外可见光谱和傅里叶变换红外差示光谱对这种不同寻常的光感受器进行研究。我们鉴定出野生型ChR2的几种瞬态光产物,并将它们的动力学和分子特性与ChR2突变体E90Q的动力学和分子特性进行比较。基于光谱数据,我们建立了一个包含六个可区分中间体的光循环模型。这个光循环与团藻中与ChR2相关的通道视紫红质的光循环有相似之处,但也存在显著差异。我们发现分子变化包括视黄醛异构化、羧酸氢键的变化以及蛋白质主链结构的大幅改变。这些改变比在细菌视紫红质等其他微生物视紫红质的光循环中观察到的改变更强,并且与动物视紫红质中发生的改变有关。紫外可见光谱和傅里叶变换红外差示光谱揭示了在暗态恢复过程中存在的两个具有不同时间常数(τ = 6和40秒)的晚期中间体。Glu(90)的羧基侧链参与了缓慢转变。我们结合视紫红质家族的其他成员讨论了ChR2光循环过程中的分子变化。

相似文献

5
Conformational changes of channelrhodopsin-2.通道视紫红质-2的构象变化
J Am Chem Soc. 2009 Jun 3;131(21):7313-9. doi: 10.1021/ja8084274.
9
A nonbleachable rhodopsin analogue with a slow photocycle.一种具有缓慢光循环的不可漂白视紫红质类似物。
J Biol Chem. 2002 Oct 25;277(43):40222-8. doi: 10.1074/jbc.M205032200. Epub 2002 Aug 12.

引用本文的文献

4
Structural Insights Into the Opening Mechanism of C1C2 Channelrhodopsin.对C1C2通道视紫红质开放机制的结构洞察
J Am Chem Soc. 2025 Jan 8;147(1):1282-1290. doi: 10.1021/jacs.4c15402. Epub 2024 Dec 16.
7
Channel Gating in Kalium Channelrhodopsin Slow Mutants.钾离子通道视紫红质慢突变体的通道门控。
J Mol Biol. 2024 Mar 1;436(5):168298. doi: 10.1016/j.jmb.2023.168298. Epub 2023 Oct 5.
9
Graded optogenetic activation of the auditory pathway for hearing restoration.经分级光遗传学激活听觉通路以恢复听力。
Brain Stimul. 2023 Mar-Apr;16(2):466-483. doi: 10.1016/j.brs.2023.01.1671. Epub 2023 Jan 23.
10
Gene therapy in hereditary retinal dystrophy.遗传性视网膜营养不良的基因治疗。
Tzu Chi Med J. 2022 Aug 23;34(4):367-372. doi: 10.4103/tcmj.tcmj_78_22. eCollection 2022 Oct-Dec.

本文引用的文献

6
Sequence of late molecular events in the activation of rhodopsin.视紫红质激活过程中晚期分子事件的序列。
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20290-5. doi: 10.1073/pnas.0710393104. Epub 2007 Dec 11.
7
Nociceptive neurons protect Drosophila larvae from parasitoid wasps.伤害感受神经元保护果蝇幼虫免受寄生蜂侵害。
Curr Biol. 2007 Dec 18;17(24):2105-2116. doi: 10.1016/j.cub.2007.11.029. Epub 2007 Nov 29.
9
Photoactivation of channelrhodopsin.通道视紫红质的光激活
J Biol Chem. 2008 Jan 18;283(3):1637-1643. doi: 10.1074/jbc.M708039200. Epub 2007 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验