文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

兔肌腱干细胞和肌腱细胞差异特性的表征。

Characterization of differential properties of rabbit tendon stem cells and tenocytes.

机构信息

MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

BMC Musculoskelet Disord. 2010 Jan 18;11:10. doi: 10.1186/1471-2474-11-10.


DOI:10.1186/1471-2474-11-10
PMID:20082706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2822826/
Abstract

BACKGROUND: Tendons are traditionally thought to consist of tenocytes only, the resident cells of tendons; however, a recent study has demonstrated that human and mouse tendons also contain stem cells, referred to as tendon stem/progenitor cells (TSCs). However, the differential properties of TSCs and tenocytes remain largely undefined. This study aims to characterize the properties of these tendon cells derived from rabbits. METHODS: TSCs and tenocytes were isolated from patellar and Achilles tendons of rabbits. The differentiation potential and cell marker expression of the two types of cells were examined using histochemical, immunohistochemical, and qRT-PCR analysis as well as in vivo implantation. In addition, morphology, colony formation, and proliferation of TSCs and tenocytes were also compared. RESULTS: It was found that TSCs were able to differentiate into adipocytes, chondrocytes, and osteocytes in vitro, and form tendon-like, cartilage-like, and bone-like tissues in vivo. In contrast, tenocytes had little such differentiation potential. Moreover, TSCs expressed the stem cell markers Oct-4, SSEA-4, and nucleostemin, whereas tenocytes expressed none of these markers. Morphologically, TSCs possessed smaller cell bodies and larger nuclei than ordinary tenocytes and had cobblestone-like morphology in confluent culture whereas tenocytes were highly elongated. TSCs also proliferated more quickly than tenocytes in culture. Additionally, TSCs from patellar tendons formed more numerous and larger colonies and proliferated more rapidly than TSCs from Achilles tendons. CONCLUSIONS: TSCs exhibit distinct properties compared to tenocytes, including differences in cell marker expression, proliferative and differentiation potential, and cell morphology in culture. Future research should investigate the mechanobiology of TSCs and explore the possibility of using TSCs to more effectively repair or regenerate injured tendons.

摘要

背景:传统上认为肌腱仅由肌腱细胞组成,即肌腱的固有细胞;然而,最近的一项研究表明,人和鼠的肌腱也含有干细胞,称为肌腱干/祖细胞(TSC)。然而,TSC 和肌腱细胞的差异特性在很大程度上仍未得到定义。本研究旨在表征源自兔肌腱的这些细胞的特性。

方法:从兔的髌腱和跟腱中分离 TSC 和肌腱细胞。使用组织化学、免疫组织化学和 qRT-PCR 分析以及体内植入来检查两种细胞的分化潜能和细胞标志物表达。此外,还比较了 TSC 和肌腱细胞的形态、集落形成和增殖。

结果:发现 TSC 能够在体外分化为脂肪细胞、软骨细胞和成骨细胞,并在体内形成肌腱样、软骨样和骨样组织。相比之下,肌腱细胞几乎没有这种分化潜能。此外,TSC 表达干细胞标志物 Oct-4、SSEA-4 和核干细胞,而肌腱细胞不表达这些标志物。形态上,TSC 比普通肌腱细胞具有更小的细胞体和更大的细胞核,在汇合培养时具有鹅卵石样形态,而肌腱细胞则高度拉长。TSC 在培养中也比肌腱细胞增殖更快。此外,髌腱来源的 TSC 形成的集落数量更多、更大,增殖速度比跟腱来源的 TSC 更快。

结论:与肌腱细胞相比,TSC 表现出明显不同的特性,包括细胞标志物表达、增殖和分化潜能以及培养中的细胞形态的差异。未来的研究应该调查 TSC 的力学生物学,并探索使用 TSC 更有效地修复或再生受损肌腱的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/2dd7427e2795/1471-2474-11-10-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/4958d9bc86e9/1471-2474-11-10-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/c9076f17f563/1471-2474-11-10-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/69c0e94c276c/1471-2474-11-10-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/d35f9c080363/1471-2474-11-10-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/60f532a58845/1471-2474-11-10-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/162f339b7969/1471-2474-11-10-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/2dd7427e2795/1471-2474-11-10-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/4958d9bc86e9/1471-2474-11-10-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/c9076f17f563/1471-2474-11-10-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/69c0e94c276c/1471-2474-11-10-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/d35f9c080363/1471-2474-11-10-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/60f532a58845/1471-2474-11-10-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/162f339b7969/1471-2474-11-10-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb3/2822826/2dd7427e2795/1471-2474-11-10-7.jpg

相似文献

[1]
Characterization of differential properties of rabbit tendon stem cells and tenocytes.

BMC Musculoskelet Disord. 2010-1-18

[2]
The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo.

Biomaterials. 2011-6-23

[3]
The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries.

Stem Cell Res Ther. 2015-9-15

[4]
Tendon Stem Cells: Mechanobiology and Development of Tendinopathy.

Adv Exp Med Biol. 2016

[5]
Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy.

J Orthop Res. 2010-5

[6]
A Novel Approach for Meniscal Regeneration Using Kartogenin-Treated Autologous Tendon Graft.

Am J Sports Med. 2017-12

[7]
Moderate and intensive mechanical loading differentially modulate the phenotype of tendon stem/progenitor cells in vivo.

PLoS One. 2020

[8]
Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes.

Am J Sports Med. 2010-8-27

[9]
A comparison of the stem cell characteristics of murine tenocytes and tendon-derived stem cells.

BMC Musculoskelet Disord. 2018-4-12

[10]
Maintenance of Tendon Stem/Progenitor Cells in Culture.

Methods Mol Biol. 2018

引用本文的文献

[1]
Plantar Fasciitis Pathophysiology and the Potential Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapy.

Biomedicines. 2025-6-23

[2]
The role of injections of mesenchymal stem cells as an augmentation tool in rotator cuff repair: a systematic review.

JSES Rev Rep Tech. 2025-1-13

[3]
PI3K-Akt signalling regulates Scx-lineage tenocytes and Tppp3-lineage paratenon sheath cells in neonatal tendon regeneration.

Nat Commun. 2025-4-20

[4]
Erroneous Differentiation of Tendon Stem/Progenitor Cells in the Pathogenesis of Tendinopathy: Current Evidence and Future Perspectives.

Stem Cell Rev Rep. 2025-2

[5]
Various Strategies of Tendon Stem/Progenitor Cell Reprogramming for Tendon Regeneration.

Int J Mol Sci. 2024-11-1

[6]
The clinical efficacy and safety of platelet-rich plasma on frozen shoulder: a systematic review and meta-analysis of randomized controlled trials.

BMC Musculoskelet Disord. 2024-9-6

[7]
Injectable self-assembled GDF5-containing dipeptide hydrogels for enhanced tendon repair.

Mater Today Bio. 2024-4-3

[8]
Global research trends and hotspots on tendon-derived stem cell: a bibliometric visualization study.

Front Bioeng Biotechnol. 2024-1-8

[9]
Assessment of Hydroxyproline Content in Rabbit Achilles Tendon Treated with Platelet Rich Fibrin (PRF).

Arch Razi Inst. 2023-6

[10]
Endotenon-Derived Type II Tendon Stem Cells Have Enhanced Proliferative and Tenogenic Potential.

Int J Mol Sci. 2023-10-12

本文引用的文献

[1]
Updates on stem cells and their applications in regenerative medicine.

J Tissue Eng Regen Med. 2008-6

[2]
Effect of tumor necrosis factor alpha on cholesterol efflux in adipocytes.

Clin Chim Acta. 2008-3

[3]
Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche.

Nat Med. 2007-10

[4]
Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation.

J Orthop Res. 2008-1

[5]
Expression of 11beta-hydroxysteroid-dehydrogenase 2 in Sertoli cells of boar testes.

Mol Cell Endocrinol. 2007-6-30

[6]
Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study.

BMC Musculoskelet Disord. 2007-2-23

[7]
A novel in vivo model to study endochondral bone formation; HIF-1alpha activation and BMP expression.

Bone. 2007-2

[8]
Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1.

Cytotherapy. 2006

[9]
Mesenchymal stem cells reside in virtually all post-natal organs and tissues.

J Cell Sci. 2006-6-1

[10]
Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model.

Tissue Eng. 2006-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索