Neuroscience Programme, International School for Advanced Studies, 34014 Trieste, Italy.
J Neurosci. 2010 Jan 20;30(3):885-93. doi: 10.1523/JNEUROSCI.3326-09.2010.
GABA, the main inhibitory transmitter in adulthood, early in postnatal development exerts a depolarizing and excitatory action. This effect, which results from a high intracellular chloride concentration (Cl(-)), promotes neuronal growth and synaptogenesis. During the second postnatal week, the developmental regulated expression of the cation-chloride cotransporter KCC2 accounts for the shift of GABA from the depolarizing to the hyperpolarizing direction. Changes in chloride homeostasis associated with high Cl(-) have been found in several neurological disorders, including temporal lobe epilepsy. Here, we report that, in adult transgenic mice engineered to express recombinant neutralizing anti-nerve growth factor antibodies (AD11 mice), GABA became depolarizing and excitatory. AD11 mice exhibit a severe deficit of the cholinergic function associated with an age-dependent progressive neurodegenerative pathology resembling that observed in Alzheimer patients. Thus, in hippocampal slices obtained from 6-month-old AD11 (but not wild-type) mice, the GABA(A) agonist isoguvacine significantly increased the firing of CA1 principal cells and, at the network level, the frequency of multiunit activity recorded with extracellular electrodes. In addition, in AD11 mice, the reversal of GABA(A)-mediated postsynaptic currents and of GABA-evoked single-channel currents were positive with respect to the resting membrane potential as estimated in perforated patch and cell attached recordings, respectively. Real-time quantitative reverse transcription-PCR and immunocytochemical experiments revealed a reduced expression of mRNA encoding for Kcc2 and of the respective protein. This novel mechanism may represent a homeostatic response that counterbalances within the hippocampal network the Alzheimer-like neurodegenerative pathology found in AD11 mice.
GABA 是成年期的主要抑制性递质,在出生后的早期阶段发挥去极化和兴奋作用。这种作用是由于细胞内氯离子浓度 (Cl(-)) 较高所致,促进神经元生长和突触形成。在出生后的第二周,阳离子-氯离子共转运蛋白 KCC2 的发育调控表达导致 GABA 从去极化作用转变为超极化作用。在包括颞叶癫痫在内的几种神经疾病中,已经发现与高 Cl(-) 相关的氯离子动态平衡变化。在这里,我们报告在表达重组中和神经生长因子抗体的成年转基因小鼠 (AD11 小鼠) 中,GABA 变得去极化和兴奋。AD11 小鼠表现出严重的胆碱能功能缺陷,与阿尔茨海默病患者中观察到的年龄依赖性进行性神经退行性病理相似。因此,在从 6 个月大的 AD11(而非野生型)小鼠中获得的海马切片中,GABA(A) 激动剂异古乌头碱显著增加 CA1 主细胞的放电,并且在网络水平上,使用细胞外电极记录的多单位活动的频率增加。此外,在 AD11 小鼠中,GABA(A) 介导的突触后电流和 GABA 诱发的单通道电流的反转相对于穿孔贴片和细胞附着记录中分别估计的静息膜电位为正。实时定量逆转录-PCR 和免疫细胞化学实验显示编码 Kcc2 的 mRNA 和相应蛋白的表达减少。这种新机制可能代表一种在 AD11 小鼠中发现的阿尔茨海默病样神经退行性病理变化的海马网络内的平衡反应。