Suppr超能文献

HmsH 的分析及其在鼠疫生物膜形成中的作用。

Analysis of HmsH and its role in plague biofilm formation.

机构信息

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St., Lexington, KY, USA.

出版信息

Microbiology (Reading). 2010 May;156(Pt 5):1424-1438. doi: 10.1099/mic.0.036640-0. Epub 2010 Jan 21.

Abstract

The Yersinia pestis Hms(+) phenotype is a manifestation of biofilm formation that causes adsorption of Congo red and haemin at 26 degrees C but not at 37 degrees C. This phenotype is required for blockage of the proventricular valve of the oriental rat flea and plays a role in transmission of bubonic plague from fleas to mammals. Genes responsible for this phenotype are located in three separate operons, hmsHFRS, hmsT and hmsP. HmsH and HmsF are outer membrane (OM) proteins, while the other four Hms proteins are located in the inner membrane. According to the Hidden Markov Method-based predictor, HmsH has a large N terminus in the periplasm, a beta-barrel structure with 16 beta-strands that traverse the OM, eight surface-exposed loops, and seven short turns connecting the beta-strands on the periplasmic side. Here, we demonstrate that HmsH is a heat-modifiable protein, a characteristic of other beta-barrel proteins, thereby supporting the bioinformatics analysis. Alanine scanning mutagenesis was used to identify conserved amino acids in the HmsH-like family that are critical for the function of HmsH in biofilm formation. Of 23 conserved amino acids mutated, four residues affected HmsH function and three likely caused protein instability. We used formaldehyde cross-linking to demonstrate that HmsH interacts with HmsF but not with HmsR, HmsS, HmsT or HmsP. Loss-of-function HmsH variants with single alanine substitutions retained their beta-structure and interaction with HmsF. Finally, using a polar hmsH : : mini-kan mutant, we demonstrated that biofilm development is not important for the pathogenesis of bubonic or pneumonic plague in mice.

摘要

鼠疫耶尔森氏菌 Hms(+)表型是生物膜形成的表现,导致刚果红和血红素在 26°C 时被吸附,但在 37°C 时不被吸附。这种表型是东方鼠蚤前胃瓣阻塞所必需的,在跳蚤向哺乳动物传播鼠疫方面发挥作用。负责这种表型的基因位于三个独立的操纵子中,即 hmsHFRS、hmsT 和 hmsP。HmsH 和 HmsF 是外膜(OM)蛋白,而其他四个 Hms 蛋白位于内膜中。根据基于隐马尔可夫方法的预测器,HmsH 在周质中有一个大的 N 端,具有 16 个β-桶结构穿过 OM、八个表面暴露的环和连接周质侧β-链的七个短转弯。在这里,我们证明 HmsH 是一种热可修饰的蛋白质,这是其他β-桶蛋白的特征,从而支持生物信息学分析。丙氨酸扫描诱变用于鉴定 HmsH 样家族中对 HmsH 在生物膜形成中的功能至关重要的保守氨基酸。在 23 个突变的保守氨基酸中,有 4 个残基影响 HmsH 的功能,3 个可能导致蛋白质不稳定。我们使用甲醛交联证明 HmsH 与 HmsF 相互作用,但不与 HmsR、HmsS、HmsT 或 HmsP 相互作用。具有单个丙氨酸取代的功能丧失 HmsH 变体保留其β-结构和与 HmsF 的相互作用。最后,使用极性 hmsH::mini-kan 突变体,我们证明生物膜发育对于鼠疫在小鼠中的鼠疫或肺鼠疫的发病机制不重要。

相似文献

1
Analysis of HmsH and its role in plague biofilm formation.
Microbiology (Reading). 2010 May;156(Pt 5):1424-1438. doi: 10.1099/mic.0.036640-0. Epub 2010 Jan 21.
2
Identification of critical amino acid residues in the plague biofilm Hms proteins.
Microbiology (Reading). 2006 Nov;152(Pt 11):3399-3410. doi: 10.1099/mic.0.29224-0.
4
Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional.
J Bacteriol. 2004 Mar;186(6):1638-47. doi: 10.1128/JB.186.6.1638-1647.2004.
5
Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation.
Environ Microbiol. 2010 Jul;12(7):2034-47. doi: 10.1111/j.1462-2920.2010.02219.x. Epub 2010 Apr 19.
6
Biofilm formation is not required for early-phase transmission of Yersinia pestis.
Microbiology (Reading). 2010 Jul;156(Pt 7):2216-2225. doi: 10.1099/mic.0.037952-0. Epub 2010 Apr 15.
7
Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis.
Gene. 1997 Jul 1;193(1):13-21. doi: 10.1016/s0378-1119(97)00071-1.
8
Proteins essential for expression of the Hms+ phenotype of Yersinia pestis.
Mol Microbiol. 1993 May;8(5):857-64. doi: 10.1111/j.1365-2958.1993.tb01632.x.
9
The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals.
Microbiology (Reading). 1999 Jan;145 ( Pt 1):197-209. doi: 10.1099/13500872-145-1-197.
10
HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis.
Microbiology (Reading). 1999 Aug;145 ( Pt 8):2117-2128. doi: 10.1099/13500872-145-8-2117.

引用本文的文献

1
and Plague: some knowns and unknowns.
Zoonoses. 2023;3(1). doi: 10.15212/zoonoses-2022-0040. Epub 2023 Jan 19.
3
The TPR domain of PgaA is a multifunctional scaffold that binds PNAG and modulates PgaB-dependent polymer processing.
PLoS Pathog. 2022 Aug 5;18(8):e1010750. doi: 10.1371/journal.ppat.1010750. eCollection 2022 Aug.
4
Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis.
NPJ Biofilms Microbiomes. 2022 Mar 29;8(1):13. doi: 10.1038/s41522-022-00281-4.
7
Factors Mediating Environmental Biofilm Formation by .
Front Cell Infect Microbiol. 2018 Feb 27;8:38. doi: 10.3389/fcimb.2018.00038. eCollection 2018.
8
Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis.
BMC Microbiol. 2016 Aug 4;16(1):176. doi: 10.1186/s12866-016-0793-5.
9
Environmental Regulation of Yersinia Pathophysiology.
Front Cell Infect Microbiol. 2016 Mar 2;6:25. doi: 10.3389/fcimb.2016.00025. eCollection 2016.
10
The protein BpsB is a poly-β-1,6-N-acetyl-D-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica.
J Biol Chem. 2015 Sep 11;290(37):22827-40. doi: 10.1074/jbc.M115.672469. Epub 2015 Jul 22.

本文引用的文献

5
Yersinia pestis biofilm in the flea vector and its role in the transmission of plague.
Curr Top Microbiol Immunol. 2008;322:229-48. doi: 10.1007/978-3-540-75418-3_11.
6
Staphylococcal biofilms.
Curr Top Microbiol Immunol. 2008;322:207-28. doi: 10.1007/978-3-540-75418-3_10.
7
Environmental influences on biofilm development.
Curr Top Microbiol Immunol. 2008;322:37-66. doi: 10.1007/978-3-540-75418-3_3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验