Suppr超能文献

用于完整三维脑回路病毒靶向的可扩展流体注射阵列。

Scalable fluidic injector arrays for viral targeting of intact 3-D brain circuits.

作者信息

Chan Stephanie, Bernstein Jacob, Boyden Edward

机构信息

Biological Engineering, Brain and Cognitive Sciences, and McGovern Institute, Massachusetts Institute of Technology, MA, USA.

出版信息

J Vis Exp. 2010 Jan 21(35):1489. doi: 10.3791/1489.

Abstract

Our understanding of neural circuits--how they mediate the computations that subserve sensation, thought, emotion, and action, and how they are corrupted in neurological and psychiatric disorders--would be greatly facilitated by a technology for rapidly targeting genes to complex 3-dimensional neural circuits, enabling fast creation of "circuit-level transgenics." We have recently developed methods in which viruses encoding for light-sensitive proteins can sensitize specific cell types to millisecond-timescale activation and silencing in the intact brain. We here present the design and implementation of an injector array capable of delivering viruses (or other fluids) to dozens of defined points within the 3-dimensional structure of the brain (Figure. 1A, 1B). The injector array comprises one or more displacement pumps that each drive a set of syringes, each of which feeds into a polyimide/fused-silica capillary via a high-pressure-tolerant connector. The capillaries are sized, and then inserted into, desired locations specified by custom-milling a stereotactic positioning board, thus allowing viruses or other reagents to be delivered to the desired set of brain regions. To use the device, the surgeon first fills the fluidic subsystem entirely with oil, backfills the capillaries with the virus, inserts the device into the brain, and infuses reagents slowly (<0.1 microliters/min). The parallel nature of the injector array facilitates rapid, accurate, and robust labeling of entire neural circuits with viral payloads such as optical sensitizers to enable light-activation and silencing of defined brain circuits. Along with other technologies, such as optical fiber arrays for light delivery to desired sets of brain regions, we hope to create a toolbox that enables the systematic probing of causal neural functions in the intact brain. This technology may not only open up such systematic approaches to circuit-focused neuroscience in mammals, and facilitate labeling of brain regions in large animals such as non-human primates, but may also open up a clinical translational path for cell-specific optical control prosthetics, whose precision may enable improved treatment of intractable brain disorders. Finally, such devices as described here may facilitate precisely-timed fluidic delivery of other payloads, such as stem cells and pharmacological agents, to 3-dimensional structures, in an easily user-customizable fashion.

摘要

我们对神经回路的理解——它们如何介导那些服务于感觉、思维、情感和行动的计算过程,以及它们在神经和精神疾病中是如何被破坏的——将因一种能将基因快速靶向复杂三维神经回路的技术而得到极大促进,该技术能快速创建“回路水平的转基因动物”。我们最近开发了一些方法,其中编码光敏蛋白的病毒能够使特定细胞类型在完整大脑中对毫秒级的激活和沉默敏感。我们在此展示一种注射阵列的设计与实现,该阵列能够将病毒(或其他液体)输送到大脑三维结构内的数十个特定点(图1A、1B)。注射阵列包括一个或多个位移泵,每个位移泵驱动一组注射器,每个注射器通过一个耐高压连接器连接到聚酰亚胺/熔融石英毛细管。毛细管经过尺寸定制后,通过对立体定位板进行定制铣削来确定其插入的期望位置,从而使病毒或其他试剂能够被输送到期望的一组脑区。要使用该设备,外科医生首先用油完全填充流体子系统,用病毒回填毛细管,将设备插入大脑,然后缓慢注入试剂(<0.1微升/分钟)。注射阵列的并行特性有助于用诸如光敏感剂等病毒载体对整个神经回路进行快速、准确且稳定的标记,从而实现对特定脑回路的光激活和沉默。连同其他技术,如用于将光输送到期望的一组脑区的光纤阵列,我们希望创建一个工具箱,以实现对完整大脑中因果神经功能的系统探究。这项技术不仅可能为哺乳动物中以回路为重点的神经科学开辟此类系统方法,并便于对诸如非人类灵长类等大型动物的脑区进行标记,还可能为细胞特异性光控假肢开辟临床转化途径,其精确性可能有助于改善对难治性脑部疾病的治疗。最后,此处所述的此类设备可能便于以易于用户定制的方式,将其他载体(如干细胞和药物制剂)精确地定时流体输送到三维结构中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验