Suppr超能文献

用于对基因靶向神经元进行治疗性光激活和沉默的假体系统。

Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons.

作者信息

Bernstein Jacob G, Han Xue, Henninger Michael A, Ko Emily Y, Qian Xiaofeng, Franzesi Giovanni Talei, McConnell Jackie P, Stern Patrick, Desimone Robert, Boyden Edward S

机构信息

MIT Media Lab, Neuromedia Group, 20 Ames St., Cambridge, MA, USA 02139.

出版信息

Proc SPIE Int Soc Opt Eng. 2008;6854:68540H. doi: 10.1117/12.768798.

Abstract

Many neural disorders are associated with aberrant activity in specific cell types or neural projection pathways embedded within the densely-wired, heterogeneous matter of the brain. An ideal therapy would permit correction of activity just in specific target neurons, while leaving other neurons unaltered. Recently our lab revealed that the naturally-occurring light-activated proteins channelrhodopsin-2 (ChR2) and halorhodopsin (Halo/NpHR) can, when genetically expressed in neurons, enable them to be safely, precisely, and reversibly activated and silenced by pulses of blue and yellow light, respectively. We here describe the ability to make specific neurons in the brain light-sensitive, using a viral approach. We also reveal the design and construction of a scalable, fully-implantable optical prosthetic capable of delivering light of appropriate intensity and wavelength to targeted neurons at arbitrary 3-D locations within the brain, enabling activation and silencing of specific neuron types at multiple locations. Finally, we demonstrate control of neural activity in the cortex of the non-human primate, a key step in the translation of such technology for human clinical use. Systems for optical targeting of specific neural circuit elements may enable a new generation of high-precision therapies for brain disorders.

摘要

许多神经疾病都与特定细胞类型或嵌入大脑密集连接、异质结构中的神经投射通路的异常活动有关。理想的治疗方法是仅对特定的目标神经元进行活动校正,而不改变其他神经元。最近,我们实验室发现,天然存在的光激活蛋白通道视紫红质-2(ChR2)和嗜盐视紫红质(Halo/NpHR),当在神经元中进行基因表达时,可分别通过蓝光脉冲和黄光脉冲使它们安全、精确且可逆地激活和沉默。我们在此描述了一种利用病毒方法使大脑中的特定神经元对光敏感的能力。我们还展示了一种可扩展的、完全可植入的光学假体的设计与构建,该假体能够将适当强度和波长的光传递到大脑内任意三维位置的目标神经元,从而在多个位置激活和沉默特定类型的神经元。最后,我们展示了对非人类灵长类动物大脑皮层神经活动的控制,这是将此类技术转化为人类临床应用的关键一步。用于特定神经回路元件光学靶向的系统可能会为脑部疾病带来新一代的高精度治疗方法。

相似文献

7
Making Sense of Optogenetics.解读光遗传学
Int J Neuropsychopharmacol. 2015 Jul 25;18(11):pyv079. doi: 10.1093/ijnp/pyv079.

引用本文的文献

5
Hybrid Electrical and Optical Neural Interfaces.混合式光电神经接口
J Micromech Microeng. 2021 Apr;31(4). doi: 10.1088/1361-6439/abeb30. Epub 2021 Mar 19.
7
Sources of widefield fluorescence from the brain.脑的宽场荧光来源。
Elife. 2020 Nov 6;9:e59841. doi: 10.7554/eLife.59841.
10
Multisite microLED optrode array for neural interfacing.用于神经接口的多部位微发光二极管光电极阵列。
Neurophotonics. 2019 Jul;6(3):035010. doi: 10.1117/1.NPh.6.3.035010. Epub 2019 Aug 28.

本文引用的文献

1
Retracing events.追溯事件。
Nat Biotechnol. 2007 Sep;25(9):949. doi: 10.1038/nbt0907-949.
6
Deep brain stimulation in headache.头痛的深部脑刺激疗法
Lancet Neurol. 2006 Oct;5(10):873-7. doi: 10.1016/S1474-4422(06)70575-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验