Suppr超能文献

闭环、超精确、自动化开颅手术。

Closed-loop, ultraprecise, automated craniotomies.

作者信息

Pak Nikita, Siegle Joshua H, Kinney Justin P, Denman Daniel J, Blanche Timothy J, Boyden Edward S

机构信息

Media Lab and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; and.

Allen Institute for Brain Science, Seattle, Washington.

出版信息

J Neurophysiol. 2015 Jun 1;113(10):3943-53. doi: 10.1152/jn.01055.2014. Epub 2015 Apr 8.

Abstract

A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations--one based on homebuilt hardware and one based on commercially available hardware--that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand.

摘要

大量神经科学技术,包括体内电生理学、双光子成像、光遗传学、损伤研究和微透析,都需要通过颅骨进入大脑。理想情况下,必要的开颅手术应以可重复和自动化的方式进行,而不会损伤下面的脑组织。在此我们报告,当钻头穿过颅底时,在钻透颅骨的过程中可以观察到电导率有典型的增加。我们提出了一种用于机器人设备的架构,该架构可以执行此算法,同时还介绍了两种实现方式——一种基于自制硬件,另一种基于商用硬件——它们可以自动检测此类变化并创建大量精确的开颅手术,即使是在单个颅骨上。我们还表明,该技术可以适用于自动钻出直径为几毫米的颅骨窗口。这样的机器人不仅有助于神经科学家更可靠地进行大小不同的开颅手术,还可用于创建与标准脑图谱立体定位对齐的精确排列的开颅手术阵列,而手工钻制这些阵列会很困难。

相似文献

1
Closed-loop, ultraprecise, automated craniotomies.
J Neurophysiol. 2015 Jun 1;113(10):3943-53. doi: 10.1152/jn.01055.2014. Epub 2015 Apr 8.
2
Automated drill-stop by SVM classified audible signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:956-9. doi: 10.1109/EMBC.2012.6346091.
3
5
Craniobot: A computer numerical controlled robot for cranial microsurgeries.
Sci Rep. 2019 Jan 31;9(1):1023. doi: 10.1038/s41598-018-37073-w.
6
Safety Analysis of a New Portable Electrical Drill With a Smart Autostop Mechanism for Bedside Cranial Procedures.
Oper Neurosurg (Hagerstown). 2023 Oct 1;25(4):311-314. doi: 10.1227/ons.0000000000000804. Epub 2023 Aug 4.
7
Cranionavigator combining a high-speed drill and a navigation system for skull base surgery--technical note.
Neurol Med Chir (Tokyo). 1999 Sep;39(9):701-7; discussion 707-8. doi: 10.2176/nmc.39.701.
8
Building an open-source robotic stereotaxic instrument.
J Vis Exp. 2013 Oct 29(80):e51006. doi: 10.3791/51006.

引用本文的文献

1
A multimodal digital twin for autonomous micro-drilling in scientific exploration.
Int J Comput Assist Radiol Surg. 2025 Jun 26. doi: 10.1007/s11548-025-03465-3.
2
Computer vision-guided rapid and precise automated cranial microsurgeries in mice.
Sci Adv. 2025 Apr 11;11(15):eadt9693. doi: 10.1126/sciadv.adt9693. Epub 2025 Apr 9.
3
Optical coherence tomography guided automatic robotic craniotomy surgery platform.
Biomed Opt Express. 2025 Jan 30;16(2):778-789. doi: 10.1364/BOE.549260. eCollection 2025 Feb 1.
4
Design of intelligent human-machine collaborative robot-assisted craniotomy system.
Heliyon. 2024 Nov 13;10(23):e40364. doi: 10.1016/j.heliyon.2024.e40364. eCollection 2024 Dec 15.
5
Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review.
J Manuf Process. 2024 Sep 30;126:185-207. doi: 10.1016/j.jmapro.2024.07.100. Epub 2024 Jul 31.
6
Two-photon calcium imaging of neuronal activity.
Nat Rev Methods Primers. 2022;2(1). doi: 10.1038/s43586-022-00147-1. Epub 2022 Sep 1.
7
Through the looking glass: A review of cranial window technology for optical access to the brain.
J Neurosci Methods. 2021 Apr 15;354:109100. doi: 10.1016/j.jneumeth.2021.109100. Epub 2021 Feb 15.
8
Robotic stereotaxic system based on 3D skull reconstruction to improve surgical accuracy and speed.
J Neurosci Methods. 2021 Jan 1;347:108955. doi: 10.1016/j.jneumeth.2020.108955. Epub 2020 Sep 21.
9
Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions.
Neuron. 2020 Jul 22;107(2):351-367.e19. doi: 10.1016/j.neuron.2020.04.023. Epub 2020 May 19.
10

本文引用的文献

1
Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording.
IEEE Trans Biomed Eng. 2016 Jan;63(1):120-130. doi: 10.1109/TBME.2015.2406113.
2
All-optical osteotomy to create windows for transcranial imaging in mice.
Opt Express. 2013 Oct 7;21(20):23160-8. doi: 10.1364/OE.21.023160.
3
The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit.
Nat Neurosci. 2013 Jan;16(1):55-63. doi: 10.1038/nn.3278. Epub 2012 Dec 16.
4
5
Brain surface temperature under a craniotomy.
J Neurophysiol. 2012 Dec;108(11):3138-46. doi: 10.1152/jn.00557.2012. Epub 2012 Sep 12.
6
Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
Nat Methods. 2012 Jun;9(6):585-7. doi: 10.1038/nmeth.1993. Epub 2012 May 6.
7
Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions.
Brain Stimul. 2012 Jul;5(3):175-195. doi: 10.1016/j.brs.2011.03.002. Epub 2011 Apr 1.
8
Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability.
Restor Neurol Neurosci. 2011;29(3):167-75. doi: 10.3233/RNN-2011-0589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验