Suppr超能文献

基于几何特征的对比增强心脏 CT 与门控心肌灌注 SPECT 的多模态图像配准。

Geometric feature-based multimodal image registration of contrast-enhanced cardiac CT with gated myocardial perfusion SPECT.

机构信息

Department of Imaging/AIM program, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.

出版信息

Med Phys. 2009 Dec;36(12):5467-79. doi: 10.1118/1.3253301.

Abstract

PURPOSE

Cardiac computed tomography (CT) and single photon emission computed tomography (SPECT) provide clinically complementary information in the diagnosis of coronary artery disease (CAD). Fused anatomical and physiological data acquired sequentially on separate scanners can be coregistered to accurately diagnose CAD in specific coronary vessels.

METHODS

A fully automated registration method is presented utilizing geometric features from a reliable segmentation of gated myocardial perfusion SPECT (MPS) volumes, where regions of myocardium and blood pools are extracted and used as an anatomical mask to de-emphasize the inhomogeneities of intensity distribution caused by perfusion defects and physiological variations. A multiresolution approach is employed to represent coarse-to-fine details of both volumes. The extracted voxels from each level are aligned using a similarity measure with a piecewise constant image model and minimized using a gradient descent method. The authors then perform limited nonlinear registration of gated MPS to adjust for phase differences by automatic cardiac phase matching between CT and MPS. For phase matching, they incorporate nonlinear registration using thin-plate-spline-based warping. Rigid registration has been compared with manual alignment (n=45) on 20 stress/rest MPS and coronary CTA data sets acquired from two different sites and five stress CT perfusion data sets. Phase matching was also compared to expert visual assessment.

RESULTS

As compared with manual alignment obtained from two expert observers, the mean and standard deviation of absolute registration errors of the proposed method for MPS were 4.3 +/- 3.5, 3.6 +/- 2.6, and 3.6 +/- 2.1 mm for translation and 2.1 +/- 3.2 degrees, 0.3 +/- 0.8 degree, and 0.7 +/- 1.2 degrees for rotation at site A and 3.8 +/- 2.7, 4.0 +/- 2.9, and 2.2 +/- 1.8mm for translation and 1.1 +/- 2.0 degrees, 1.6 +/- 3.1 degrees, and 1.9 +/- 3.8 degrees for rotation at site B. The results for CT perfusion were 3.0 +/- 2.9, 3.5 +/- 2.4, and 2.8 +/- 1.0 mm for translation and 3.0 +/- 2.4 degrees, 0.6 +/- 0.9 degree, and 1.2 +/- 1.3 degrees for rotation. The registration error shows that the proposed method achieves registration accuracy of less than 1 voxel (6.4 x 6.4 x 6.4 mm) misalignment. The proposed method was robust for different initializations in the range from -80 to 70, -80 to 70, and -50 to 50 mm in the x-, y-, and z-axes, respectively. Validation results of finding best matching phase showed that best matching phases were not different by more than two phases, as visually determined.

CONCLUSIONS

The authors have developed a fast and fully automated method for registration of contrast cardiac CT with gated MPS which includes nonlinear cardiac phase matching and is capable of registering these modalities with accuracy <10 mm in 87% of the cases.

摘要

目的

心脏计算机断层扫描(CT)和单光子发射计算机断层扫描(SPECT)在冠状动脉疾病(CAD)的诊断中提供临床互补信息。在单独的扫描仪上顺序采集的融合解剖和生理数据可以进行配准,以准确诊断特定冠状动脉中的 CAD。

方法

提出了一种完全自动化的配准方法,利用门控心肌灌注 SPECT(MPS)容积可靠分割的几何特征,提取心肌和血池区域,并用作解剖掩模,以减轻灌注缺陷和生理变化引起的强度分布不均匀性。采用多分辨率方法表示两个体积的粗到细细节。从每个水平提取的体素使用具有分段常数图像模型的相似性度量进行对齐,并使用梯度下降方法最小化。然后,作者通过 CT 和 MPS 之间的自动心脏相位匹配对门控 MPS 进行有限的非线性配准,以调整相位差。对于相位匹配,他们使用基于薄板样条的变形进行非线性配准。在从两个不同站点采集的 20 个应激/休息 MPS 和冠状动脉 CTA 数据集以及五个应激 CT 灌注数据集上,将刚性配准与手动对准(n=45)进行了比较。相位匹配也与专家视觉评估进行了比较。

结果

与两名专家观察员从手动对齐获得的结果相比,该方法用于 MPS 的平均和标准偏差的绝对配准误差为 4.3 +/- 3.5、3.6 +/- 2.6 和 3.6 +/- 2.1mm 用于平移,2.1 +/- 3.2 度、0.3 +/- 0.8 度和 0.7 +/- 1.2 度用于旋转,站点 A 和 3.8 +/- 2.7、4.0 +/- 2.9 和 2.2 +/- 1.8mm 用于平移,1.1 +/- 2.0 度、1.6 +/- 3.1 度和 1.9 +/- 3.8 度用于旋转,站点 B。CT 灌注的结果分别为 3.0 +/- 2.9、3.5 +/- 2.4 和 2.8 +/- 1.0mm 用于平移,3.0 +/- 2.4 度、0.6 +/- 0.9 度和 1.2 +/- 1.3 度用于旋转。注册误差表明,该方法的注册精度小于 1 个体素(6.4 x 6.4 x 6.4mm)的偏差。该方法在 x、y 和 z 轴的范围分别为-80 到 70、-80 到 70 和-50 到 50mm 时,对于不同的初始化是稳健的。最佳匹配相位的验证结果表明,最佳匹配相位相差不超过两个相位,与视觉确定的结果相同。

结论

作者开发了一种快速且完全自动化的方法,用于将对比心脏 CT 与门控 MPS 配准,其中包括非线性心脏相位匹配,并且能够以<10mm 的精度在 87%的情况下对这些模式进行配准。

相似文献

2
Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography.
J Nucl Med. 2009 Oct;50(10):1621-30. doi: 10.2967/jnumed.109.063982. Epub 2009 Sep 16.
3
AUTOMATED MULTI-MODALITY REGISTRATION OF 64-SLICE CORONARY CT ANGIOGRAPHY WITH MYOCARDIAL PERFUSION SPECT.
Proc IEEE Int Symp Biomed Imaging. 2009:358-361. doi: 10.1109/ISBI.2009.5193058.
7
Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT.
J Nucl Cardiol. 2012 Jun;19(3):482-91. doi: 10.1007/s12350-012-9528-7. Epub 2012 Mar 15.
8
Reference values for left ventricular systolic synchrony according to phase analysis of ECG-gated myocardial perfusion SPECT.
Clin Physiol Funct Imaging. 2018 Jan;38(1):38-45. doi: 10.1111/cpf.12379. Epub 2016 Jul 24.
10
Diagnostic accuracy of semi-automatic quantitative metrics as an alternative to expert reading of CT myocardial perfusion in the CORE320 study.
J Cardiovasc Comput Tomogr. 2018 May-Jun;12(3):212-219. doi: 10.1016/j.jcct.2018.03.010. Epub 2018 Apr 3.

引用本文的文献

1
Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks.
Med Biol Eng Comput. 2019 May;57(5):1037-1048. doi: 10.1007/s11517-018-1924-y. Epub 2018 Dec 7.
2
Method comparison for cardiac image registration of coronary computed tomography angiography and 3-D echocardiography.
J Med Imaging (Bellingham). 2018 Jan;5(1):014001. doi: 10.1117/1.JMI.5.1.014001. Epub 2018 Jan 4.
4
Multimodal registration via mutual information incorporating geometric and spatial context.
IEEE Trans Image Process. 2015 Feb;24(2):757-69. doi: 10.1109/TIP.2014.2387019.
5
Automatic Alignment of Myocardial Perfusion Images With Contrast-Enhanced Cardiac Computed Tomography.
IEEE Trans Nucl Sci. 2011 Oct;58(5):2296-2302. doi: 10.1109/TNS.2011.2163526.
6
Bidirectional elastic image registration using B-spline affine transformation.
Comput Med Imaging Graph. 2014 Jun;38(4):306-14. doi: 10.1016/j.compmedimag.2014.01.002. Epub 2014 Jan 25.
7
Multimodality image fusion for diagnosing coronary artery disease.
J Biomed Res. 2013 Nov;27(6):439-51. doi: 10.7555/JBR.27.20130138. Epub 2013 Sep 28.
8
Automatic detection of left and right ventricles from CTA enables efficient alignment of anatomy with myocardial perfusion data.
J Nucl Cardiol. 2014 Feb;21(1):96-108. doi: 10.1007/s12350-013-9812-1. Epub 2013 Nov 2.
9
Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT.
J Nucl Cardiol. 2012 Jun;19(3):482-91. doi: 10.1007/s12350-012-9528-7. Epub 2012 Mar 15.

本文引用的文献

1
AUTOMATED MULTI-MODALITY REGISTRATION OF 64-SLICE CORONARY CT ANGIOGRAPHY WITH MYOCARDIAL PERFUSION SPECT.
Proc IEEE Int Symp Biomed Imaging. 2009:358-361. doi: 10.1109/ISBI.2009.5193058.
2
Automated quality control for segmentation of myocardial perfusion SPECT.
J Nucl Med. 2009 Sep;50(9):1418-26. doi: 10.2967/jnumed.108.061333. Epub 2009 Aug 18.
3
Multimodality image registration with software: state-of-the-art.
Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S44-55. doi: 10.1007/s00259-008-0941-8.
4
Image quality and artifacts in coronary CT angiography with dual-source CT: initial clinical experience.
J Cardiovasc Comput Tomogr. 2008 Mar-Apr;2(2):105-14. doi: 10.1016/j.jcct.2007.12.017. Epub 2008 Jan 15.
5
Cardiac CT: state of the art for the detection of coronary arterial stenosis.
J Cardiovasc Comput Tomogr. 2007 Jul;1(1):3-20. doi: 10.1016/j.jcct.2007.04.007. Epub 2007 May 18.
6
Applications and software techniques for integrated cardiac multimodality imaging.
Expert Rev Cardiovasc Ther. 2008 Jan;6(1):27-41. doi: 10.1586/14779072.6.1.27.
7
Registration of cardiac SPECT/CT data through weighted intensity co-occurrence priors.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):725-33. doi: 10.1007/978-3-540-75757-3_88.
8
Myocardial perfusion and function: single photon emission computed tomography.
J Nucl Cardiol. 2007 Nov-Dec;14(6):e39-60. doi: 10.1016/j.nuclcard.2007.09.023.
9
Cardiac image fusion from stand-alone SPECT and CT: clinical experience.
J Nucl Med. 2007 May;48(5):696-703. doi: 10.2967/jnumed.106.037606.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验