Suppr超能文献

大规模神经动力学:简单与复杂。

Large-scale neural dynamics: simple and complex.

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.

出版信息

Neuroimage. 2010 Sep;52(3):731-9. doi: 10.1016/j.neuroimage.2010.01.045. Epub 2010 Jan 22.

Abstract

We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models, we build to spatially extend cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.

摘要

我们回顾了神经场模型在解释 EEG、fMRI、MEG 和光学成像数据所需的大尺度上对大脑进行建模的应用。尽管该框架仅限于粗粒度或平均场活动,但神经场模型为统一来自不同成像模式的数据提供了一个框架。从神经质量模型的描述开始,我们构建了具有长程轴突连接的分层二维薄片的空间扩展皮质模型,这些连接介导着突触相互作用。本文还描述了基本非局部数学模型如何重新表述为更熟悉的局部微分(脑波)方程。描述了分析此类模型的技术,包括如何确定时空模式形成不稳定性的开始,还描述了将基本形式扩展到处理不应期、自适应反馈和非均匀连接的方法,以及开发能够将大空间尺度上的宏观模型与微观尺度上的模型集成在一起的多尺度模型的开放性挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验