Image Analysis Lab., Radiology Department, Henry Ford Hospital, One Ford Place, 2F, Detroit, MI 48202, USA.
Neuroimage. 2010 Sep;52(3):793-811. doi: 10.1016/j.neuroimage.2010.01.034. Epub 2010 Jan 18.
We previously proposed an integrated electroencephalography (EEG), magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI) model based on an extended neural mass model (ENMM) within a single cortical area. In the ENMM, a cortical area contains several minicolumns where strengths of their connections diminish exponentially with their distances. The ENMM was derived based on the physiological principles of the cortical minicolumns and their connections within a single cortical area to generate EEG, MEG, and fMRI signals. The purpose of this paper is to further extend the ENMM model from a single-area to a multi-area model to develop a neural mass model of the entire brain that generates EEG and MEG signals. For multi-area modeling, two connection types are considered: short-range connections (SRCs) and long-range connections (LRCs). The intra-area SRCs among the minicolumns within the areas were previously modeled in the ENMM. To define inter-area LRCs among the cortical areas, we consider that the cell populations of all minicolumns in the destination area are affected by the excitatory afferent of the pyramidal cells of all minicolumns in the source area. The state-space representation of the multi-area model is derived considering the intra-minicolumn, SRCs', and LRCs' parameters. Using simulations, we evaluate effects of parameters of the model on its dynamics and, based on stability analysis, find valid ranges for parameters of the model. In addition, we evaluate reducing redundancy of the model parameters using simulation results and conclude that the parameters of the model can be limited to the LRCs and SRCs while the intra-minicolumn parameters stay at their physiological mean values. The proposed multi-area integrated E/MEG model provides an efficient neuroimaging technique for effective connectivity analysis in healthy subjects as well as neurological and psychiatric patients.
我们之前提出了一个基于扩展神经质量模型(ENMM)的整合脑电图(EEG)、脑磁图(MEG)和功能磁共振成像(fMRI)模型,该模型基于单个皮质区域内的扩展神经质量模型(ENMM)。在 ENMM 中,一个皮质区域包含几个微柱,其连接强度随距离呈指数衰减。ENMM 是基于皮质微柱及其在单个皮质区域内的连接的生理原理推导出来的,用于生成 EEG、MEG 和 fMRI 信号。本文的目的是进一步将 ENMM 模型从单区域扩展到多区域模型,以开发生成 EEG 和 MEG 信号的整个大脑的神经质量模型。对于多区域建模,考虑了两种连接类型:短程连接(SRC)和远程连接(LRC)。区域内的微柱之间的区域内 SRC 已在 ENMM 中进行了建模。为了定义皮质区域之间的区域间 LRC,我们认为目标区域中所有微柱的细胞群体都受到源区域中所有微柱的锥体细胞兴奋性传入的影响。考虑到内部微柱、SRC 和 LRC 参数,推导出多区域模型的状态空间表示。使用模拟,我们评估模型参数对其动态的影响,并基于稳定性分析为模型参数找到有效范围。此外,我们使用模拟结果评估模型参数冗余度的降低,并得出结论,模型参数可以限制在 LRC 和 SRC,而内部微柱参数保持在生理平均值。所提出的多区域集成 E/MEG 模型为健康受试者以及神经和精神疾病患者的有效连接分析提供了一种有效的神经影像学技术。