文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

图神经场:人类连接组上时空动态模型的框架。

Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.

机构信息

Department of Mathematics, Vrije Universiteit, Amsterdam, The Netherlands.

Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS Comput Biol. 2021 Jan 28;17(1):e1008310. doi: 10.1371/journal.pcbi.1008310. eCollection 2021 Jan.


DOI:10.1371/journal.pcbi.1008310
PMID:33507899
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7872285/
Abstract

Tools from the field of graph signal processing, in particular the graph Laplacian operator, have recently been successfully applied to the investigation of structure-function relationships in the human brain. The eigenvectors of the human connectome graph Laplacian, dubbed "connectome harmonics", have been shown to relate to the functionally relevant resting-state networks. Whole-brain modelling of brain activity combines structural connectivity with local dynamical models to provide insight into the large-scale functional organization of the human brain. In this study, we employ the graph Laplacian and its properties to define and implement a large class of neural activity models directly on the human connectome. These models, consisting of systems of stochastic integrodifferential equations on graphs, are dubbed graph neural fields, in analogy with the well-established continuous neural fields. We obtain analytic predictions for harmonic and temporal power spectra, as well as functional connectivity and coherence matrices, of graph neural fields, with a technique dubbed CHAOSS (shorthand for Connectome-Harmonic Analysis Of Spatiotemporal Spectra). Combining graph neural fields with appropriate observation models allows for estimating model parameters from experimental data as obtained from electroencephalography (EEG), magnetoencephalography (MEG), or functional magnetic resonance imaging (fMRI). As an example application, we study a stochastic Wilson-Cowan graph neural field model on a high-resolution connectome graph constructed from diffusion tensor imaging (DTI) and structural MRI data. We show that the model equilibrium fluctuations can reproduce the empirically observed harmonic power spectrum of resting-state fMRI data, and predict its functional connectivity, with a high level of detail. Graph neural fields natively allow the inclusion of important features of cortical anatomy and fast computations of observable quantities for comparison with multimodal empirical data. They thus appear particularly suitable for modelling whole-brain activity at mesoscopic scales, and opening new potential avenues for connectome-graph-based investigations of structure-function relationships.

摘要

来自图信号处理领域的工具,特别是图拉普拉斯算子,最近已成功应用于研究人类大脑的结构-功能关系。人类连接体图拉普拉斯算子的特征向量,被称为“连接体谐波”,与功能相关的静息态网络有关。大脑活动的全脑建模将结构连接性与局部动力模型相结合,为深入了解人类大脑的大规模功能组织提供了线索。在这项研究中,我们利用图拉普拉斯及其性质,直接在人类连接体上定义和实现一大类神经活动模型。这些模型由图上的随机积分微分方程系统组成,被称为图神经场,与成熟的连续神经场类似。我们使用一种名为 CHAOSS(Connectome-Harmonic Analysis Of Spatiotemporal Spectra 的缩写)的技术,对图神经场的谐波和时间功率谱、功能连接和相干矩阵进行了分析预测。结合图神经场和适当的观测模型,可以从脑电图(EEG)、脑磁图(MEG)或功能磁共振成像(fMRI)等实验数据中估计模型参数。作为一个示例应用,我们研究了一个基于扩散张量成像(DTI)和结构 MRI 数据构建的高分辨率连接体图的随机 Wilson-Cowan 图神经场模型。我们表明,模型的平衡波动可以再现静息态 fMRI 数据的经验观察到的谐波功率谱,并以较高的细节水平预测其功能连接。图神经场自然允许包括皮质解剖的重要特征,并对可观察量进行快速计算,以便与多模态经验数据进行比较。因此,它们似乎特别适合在介观尺度上模拟全脑活动,并为基于连接体图的结构-功能关系研究开辟新的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/3117c9409b93/pcbi.1008310.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/a573321cdb7d/pcbi.1008310.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/b822d40d22c2/pcbi.1008310.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/0c0bcbefcd91/pcbi.1008310.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/d55916bc8633/pcbi.1008310.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/b1d3c512e2b1/pcbi.1008310.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/044b33e800f5/pcbi.1008310.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/5109d71f075d/pcbi.1008310.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/3aa83dde421e/pcbi.1008310.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/3117c9409b93/pcbi.1008310.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/a573321cdb7d/pcbi.1008310.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/b822d40d22c2/pcbi.1008310.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/0c0bcbefcd91/pcbi.1008310.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/d55916bc8633/pcbi.1008310.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/b1d3c512e2b1/pcbi.1008310.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/044b33e800f5/pcbi.1008310.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/5109d71f075d/pcbi.1008310.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/3aa83dde421e/pcbi.1008310.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f1/7872285/3117c9409b93/pcbi.1008310.g009.jpg

相似文献

[1]
Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.

PLoS Comput Biol. 2021-1

[2]
Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.

Hum Brain Mapp. 2021-10-15

[3]
Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.

Neuroimage. 2017-8-24

[4]
Spectral graph theory of brain oscillations.

Hum Brain Mapp. 2020-8-1

[5]
Constructing Connectome Atlas by Graph Laplacian Learning.

Neuroinformatics. 2021-4

[6]
The structural connectome constrains fast brain dynamics.

Elife. 2021-7-9

[7]
Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.

Neuroimage. 2014-3-31

[8]
Connectome spectral analysis to track EEG task dynamics on a subsecond scale.

Neuroimage. 2020-11-1

[9]
Multi-modal and multi-model interrogation of large-scale functional brain networks.

Neuroimage. 2023-8-15

[10]
Brain organization into resting state networks emerges at criticality on a model of the human connectome.

Phys Rev Lett. 2013-4-22

引用本文的文献

[1]
Metric structural human connectomes: Localization and multifractality of eigenmodes.

Netw Neurosci. 2025-5-8

[2]
Beyond-local neural information processing in neuronal networks.

Comput Struct Biotechnol J. 2024-11-13

[3]
Connectivity of high-frequency bursts as SOZ localization biomarker.

Front Netw Physiol. 2024-9-20

[4]
Criticality and partial synchronization analysis in Wilson-Cowan and Jansen-Rit neural mass models.

PLoS One. 2024

[5]
Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse.

Commun Biol. 2023-3-13

[6]
Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness.

Elife. 2022-8-2

[7]
Correction: Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.

PLoS Comput Biol. 2022-6-1

[8]
Predicting time-resolved electrophysiological brain networks from structural eigenmodes.

Hum Brain Mapp. 2022-10-1

[9]
Gradients of connectivity as graph Fourier bases of brain activity.

Netw Neurosci. 2021-4-27

[10]
DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries.

Sci Rep. 2021-6-22

本文引用的文献

[1]
Dynamics of neural fields with exponential temporal kernel.

Theory Biosci. 2024-6

[2]
Mathematical Relations Between Measures of Brain Connectivity Estimated From Electrophysiological Recordings for Gaussian Distributed Data.

Front Neurosci. 2020-11-10

[3]
A mechanistic model of the neural entropy increase elicited by psychedelic drugs.

Sci Rep. 2020-10-20

[4]
Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders.

Nat Rev Neurosci. 2020-11

[5]
Connectome spectral analysis to track EEG task dynamics on a subsecond scale.

Neuroimage. 2020-11-1

[6]
Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches.

Neuroimage. 2020-8-1

[7]
Dynamic coupling of whole-brain neuronal and neurotransmitter systems.

Proc Natl Acad Sci U S A. 2020-4-13

[8]
Spectral graph theory of brain oscillations.

Hum Brain Mapp. 2020-8-1

[9]
Next-generation neural mass and field modeling.

J Neurophysiol. 2020-2-1

[10]
Decoupling of brain function from structure reveals regional behavioral specialization in humans.

Nat Commun. 2019-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索