Department of Mathematics, Vrije Universiteit, Amsterdam, The Netherlands.
Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom.
PLoS Comput Biol. 2021 Jan 28;17(1):e1008310. doi: 10.1371/journal.pcbi.1008310. eCollection 2021 Jan.
Tools from the field of graph signal processing, in particular the graph Laplacian operator, have recently been successfully applied to the investigation of structure-function relationships in the human brain. The eigenvectors of the human connectome graph Laplacian, dubbed "connectome harmonics", have been shown to relate to the functionally relevant resting-state networks. Whole-brain modelling of brain activity combines structural connectivity with local dynamical models to provide insight into the large-scale functional organization of the human brain. In this study, we employ the graph Laplacian and its properties to define and implement a large class of neural activity models directly on the human connectome. These models, consisting of systems of stochastic integrodifferential equations on graphs, are dubbed graph neural fields, in analogy with the well-established continuous neural fields. We obtain analytic predictions for harmonic and temporal power spectra, as well as functional connectivity and coherence matrices, of graph neural fields, with a technique dubbed CHAOSS (shorthand for Connectome-Harmonic Analysis Of Spatiotemporal Spectra). Combining graph neural fields with appropriate observation models allows for estimating model parameters from experimental data as obtained from electroencephalography (EEG), magnetoencephalography (MEG), or functional magnetic resonance imaging (fMRI). As an example application, we study a stochastic Wilson-Cowan graph neural field model on a high-resolution connectome graph constructed from diffusion tensor imaging (DTI) and structural MRI data. We show that the model equilibrium fluctuations can reproduce the empirically observed harmonic power spectrum of resting-state fMRI data, and predict its functional connectivity, with a high level of detail. Graph neural fields natively allow the inclusion of important features of cortical anatomy and fast computations of observable quantities for comparison with multimodal empirical data. They thus appear particularly suitable for modelling whole-brain activity at mesoscopic scales, and opening new potential avenues for connectome-graph-based investigations of structure-function relationships.
来自图信号处理领域的工具,特别是图拉普拉斯算子,最近已成功应用于研究人类大脑的结构-功能关系。人类连接体图拉普拉斯算子的特征向量,被称为“连接体谐波”,与功能相关的静息态网络有关。大脑活动的全脑建模将结构连接性与局部动力模型相结合,为深入了解人类大脑的大规模功能组织提供了线索。在这项研究中,我们利用图拉普拉斯及其性质,直接在人类连接体上定义和实现一大类神经活动模型。这些模型由图上的随机积分微分方程系统组成,被称为图神经场,与成熟的连续神经场类似。我们使用一种名为 CHAOSS(Connectome-Harmonic Analysis Of Spatiotemporal Spectra 的缩写)的技术,对图神经场的谐波和时间功率谱、功能连接和相干矩阵进行了分析预测。结合图神经场和适当的观测模型,可以从脑电图(EEG)、脑磁图(MEG)或功能磁共振成像(fMRI)等实验数据中估计模型参数。作为一个示例应用,我们研究了一个基于扩散张量成像(DTI)和结构 MRI 数据构建的高分辨率连接体图的随机 Wilson-Cowan 图神经场模型。我们表明,模型的平衡波动可以再现静息态 fMRI 数据的经验观察到的谐波功率谱,并以较高的细节水平预测其功能连接。图神经场自然允许包括皮质解剖的重要特征,并对可观察量进行快速计算,以便与多模态经验数据进行比较。因此,它们似乎特别适合在介观尺度上模拟全脑活动,并为基于连接体图的结构-功能关系研究开辟新的潜在途径。
PLoS Comput Biol. 2021-1
Hum Brain Mapp. 2021-10-15
Hum Brain Mapp. 2020-8-1
Neuroinformatics. 2021-4
Elife. 2021-7-9
Neuroimage. 2020-11-1
Neuroimage. 2023-8-15
Netw Neurosci. 2025-5-8
Comput Struct Biotechnol J. 2024-11-13
Front Netw Physiol. 2024-9-20
Hum Brain Mapp. 2022-10-1
Netw Neurosci. 2021-4-27
Theory Biosci. 2024-6
Nat Rev Neurosci. 2020-11
Neuroimage. 2020-11-1
Proc Natl Acad Sci U S A. 2020-4-13
Hum Brain Mapp. 2020-8-1
J Neurophysiol. 2020-2-1