Suppr超能文献

基于层次图像聚类和图谱综合的组间配准。

Groupwise registration based on hierarchical image clustering and atlas synthesis.

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, USA.

出版信息

Hum Brain Mapp. 2010 Aug;31(8):1128-40. doi: 10.1002/hbm.20923.

Abstract

Groupwise registration has recently been proposed for simultaneous and consistent registration of all images in a group. Since many deformation parameters need to be optimized for each image under registration, the number of images that can be effectively handled by conventional groupwise registration methods is limited. Moreover, the robustness of registration is at stake due to significant intersubject variability. To overcome these problems, we present a groupwise registration framework, which is based on a hierarchical image clustering and atlas synthesis strategy. The basic idea is to decompose a large-scale groupwise registration problem into a series of small-scale problems, each of which is relatively easy to solve using a general computer. In particular, we employ a method called affinity propagation, which is designed for fast and robust clustering, to hierarchically cluster images into a pyramid of classes. Intraclass registration is then performed to register all images within individual classes, resulting in a representative center image for each class. These center images of different classes are further registered, from the bottom to the top in the pyramid. Once the registration reaches the summit of the pyramid, a single center image, or an atlas, is synthesized. Utilizing this strategy, we can efficiently and effectively register a large image group, construct their atlas, and, at the same time, establish shape correspondences between each image and the atlas. We have evaluated our framework using real and simulated data, and the results indicate that our framework achieves better robustness and registration accuracy compared to conventional methods.

摘要

分组配准最近被提出用于同时和一致地配准一组中的所有图像。由于在配准下需要为每个图像优化许多变形参数,因此常规分组配准方法能够有效处理的图像数量是有限的。此外,由于受试者间的显著可变性,配准的稳健性受到了影响。为了克服这些问题,我们提出了一种基于分层图像聚类和图谱综合策略的分组配准框架。基本思想是将大规模的分组配准问题分解为一系列小规模的问题,每个问题都可以使用普通计算机相对容易地解决。特别是,我们使用了一种称为亲和力传播的方法,该方法专为快速和稳健的聚类而设计,用于分层地将图像聚类为类的金字塔。然后,对每个类内的所有图像进行内部类配准,从而为每个类生成一个代表性的中心图像。这些不同类别的中心图像进一步从金字塔的底部到顶部进行配准。一旦注册到达金字塔的顶点,就会合成单个中心图像或图谱。利用这种策略,我们可以高效地对大量图像组进行配准,构建它们的图谱,并同时在每个图像和图谱之间建立形状对应关系。我们使用真实和模拟数据评估了我们的框架,结果表明与传统方法相比,我们的框架具有更好的稳健性和配准精度。

相似文献

2
ABSORB: Atlas Building by Self-organized Registration and Bundling.吸收:通过自组织注册和捆绑的图谱构建。
Neuroimage. 2010 Jul 1;51(3):1057-70. doi: 10.1016/j.neuroimage.2010.03.010. Epub 2010 Mar 10.
7
Groupwise registration by hierarchical anatomical correspondence detection.通过分层解剖对应检测进行分组配准。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.

引用本文的文献

3
Diffeomorphic Surface Registration with Atrophy Constraints.具有萎缩约束的微分同胚曲面配准
SIAM J Imaging Sci. 2016;9(3):975-1003. doi: 10.1137/15m104431x. Epub 2016 Jul 13.

本文引用的文献

1
The role of image registration in brain mapping.图像配准在脑图谱绘制中的作用。
Image Vis Comput. 2001 Jan 1;19(1-2):3-24. doi: 10.1016/S0262-8856(00)00055-X.
2
Combined volumetric and surface registration.体积与表面联合配准。
IEEE Trans Med Imaging. 2009 Apr;28(4):508-22. doi: 10.1109/TMI.2008.2004426. Epub 2008 Aug 15.
3
Discovering modes of an image population through mixture modeling.通过混合建模发现图像群体的模式。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
4
Construction of a 3D probabilistic atlas of human cortical structures.人类皮质结构三维概率图谱的构建。
Neuroimage. 2008 Feb 1;39(3):1064-80. doi: 10.1016/j.neuroimage.2007.09.031. Epub 2007 Nov 26.
5
Atlas stratification.图谱分层。
Med Image Anal. 2007 Oct;11(5):443-57. doi: 10.1016/j.media.2007.07.001. Epub 2007 Jul 25.
7
Clustering by passing messages between data points.通过在数据点之间传递信息进行聚类。
Science. 2007 Feb 16;315(5814):972-6. doi: 10.1126/science.1136800. Epub 2007 Jan 11.
10
Least biased target selection in probabilistic atlas construction.概率图谱构建中偏差最小的目标选择
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):419-26. doi: 10.1007/11566489_52.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验