Suppr超能文献

可调谐等离子体纳米气泡用于细胞治疗学。

Tunable plasmonic nanobubbles for cell theranostics.

机构信息

Laboratory for Laser Cytotechnologies, A V Lykov Heat and Mass Transfer Institute, 15 Brovka Street, Minsk 220072, Belarus.

出版信息

Nanotechnology. 2010 Feb 26;21(8):85102. doi: 10.1088/0957-4484/21/8/085102. Epub 2010 Jan 25.

Abstract

Combining diagnostic and therapeutic processes into one (theranostics) and improving their selectivity to the cellular level may offer significant benefits in various research and disease systems and currently is not supported with efficient methods and agents. We have developed a novel method based on the gold nanoparticle-generated transient photothermal vapor nanobubbles, that we refer to as plasmonic nanobubbles (PNB). After delivery and clusterization of the gold nanoparticles (NP) to the target cells the intracellular PNBs were optically generated and controlled through the laser fluence. The PNB action was tuned in individual living cells from non-invasive high-sensitive imaging at lower fluence to disruption of the cellular membrane at higher fluence. We have achieved non-invasive 50-fold amplification of the optical scattering amplitude with the PNBs (relative to that of NPs), selective mechanical and fast damage to specific cells with bigger PNBs, and optical guidance of the damage through the damage-specific signals of the bubbles. Thus the PNBs acted as tunable theranostic agents at the cellular level and in one process that have supported diagnosis, therapy and guidance of the therapy.

摘要

将诊断和治疗过程结合为一体(治疗学),并提高其对细胞水平的选择性,可能会在各种研究和疾病系统中带来重大益处,但目前还没有有效的方法和试剂来支持这一点。我们开发了一种基于金纳米颗粒产生的瞬态光热蒸汽纳米气泡的新方法,我们称之为等离子体纳米气泡(PNB)。金纳米颗粒(NP)被递送到靶细胞并聚集后,通过激光强度来光学产生和控制细胞内的 PNB。通过调节激光强度,PNB 可以在单个活细胞中进行非侵入式的高灵敏度成像,或者在更高的激光强度下破坏细胞膜。我们已经实现了非侵入式的 50 倍光散射幅度放大,与 NPs 相比,通过更大的 PNB 选择性地对特定细胞进行机械和快速破坏,并通过气泡的损伤特异性信号对损伤进行光学引导。因此,PNB 可以作为一种在细胞水平上进行诊断、治疗和治疗指导的可调式治疗学试剂。

相似文献

1
Tunable plasmonic nanobubbles for cell theranostics.
Nanotechnology. 2010 Feb 26;21(8):85102. doi: 10.1088/0957-4484/21/8/085102. Epub 2010 Jan 25.
3
The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts.
Biomaterials. 2010 Oct;31(29):7567-74. doi: 10.1016/j.biomaterials.2010.06.031. Epub 2010 Jul 14.
4
Transient photothermal spectra of plasmonic nanobubbles.
Langmuir. 2012 Mar 13;28(10):4858-66. doi: 10.1021/la205132x. Epub 2012 Feb 28.
5
Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications.
Nanomedicine (Lond). 2009 Oct;4(7):813-45. doi: 10.2217/nnm.09.59.
6
Tunable plasmonic nanoprobes for theranostics of prostate cancer.
Theranostics. 2011 Jan 10;1:3-17. doi: 10.7150/thno/v01p0003.
7
Photothermal bubbles as optical scattering probes for imaging living cells.
Nanomedicine (Lond). 2008 Dec;3(6):797-812. doi: 10.2217/17435889.3.6.797.
8
Selective gene transfection of individual cells in vitro with plasmonic nanobubbles.
J Control Release. 2011 Jun 10;152(2):286-93. doi: 10.1016/j.jconrel.2011.02.006. Epub 2011 Feb 17.
9
Nanotechnological selection.
Nanotechnology. 2013 Jan 18;24(2):020201. doi: 10.1088/0957-4484/24/2/020201. Epub 2012 Dec 14.
10
Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles.
J Surg Res. 2011 Mar;166(1):e3-13. doi: 10.1016/j.jss.2010.10.039. Epub 2010 Nov 26.

引用本文的文献

1
Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method.
Nanoscale Adv. 2024 Aug 19;6(20):5007-19. doi: 10.1039/d4na00122b.
2
Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to Qβ Virus-like Particles.
ACS Nano. 2023 Apr 25;17(8):7797-7805. doi: 10.1021/acsnano.3c00638. Epub 2023 Mar 8.
3
Cerium Oxide Nanoparticles with Entrapped Gadolinium for High Relaxivity and ROS-Scavenging Purposes.
ACS Omega. 2022 Jun 7;7(24):21337-21345. doi: 10.1021/acsomega.2c03055. eCollection 2022 Jun 21.
5
Encapsulation of Gold Nanorods with Porphyrins for the Potential Treatment of Cancer and Bacterial Diseases: A Critical Review.
Bioinorg Chem Appl. 2019 Apr 30;2019:7147128. doi: 10.1155/2019/7147128. eCollection 2019.
6
Extraordinary Focusing Effect of Surface Nanolenses in Total Internal Reflection Mode.
ACS Cent Sci. 2018 Nov 28;4(11):1511-1519. doi: 10.1021/acscentsci.8b00501. Epub 2018 Oct 19.
7
Dynamics of Formation of a Vapor Nanobubble Around a Heated Nanoparticle.
J Phys Chem C Nanomater Interfaces. 2018 Sep 13;122(36):20571-20580. doi: 10.1021/acs.jpcc.8b04017. Epub 2018 Aug 17.
8
Analysis of poration-induced changes in cells from laser-activated plasmonic substrates.
Biomed Opt Express. 2017 Sep 27;8(10):4756-4771. doi: 10.1364/BOE.8.004756. eCollection 2017 Oct 1.
9
Remotely Triggered Nano-Theranostics For Cancer Applications.
Nanotheranostics. 2017;1(1):1-22. doi: 10.7150/ntno.17109.
10

本文引用的文献

1
Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16913-8. doi: 10.1073/pnas.0904860106. Epub 2009 Sep 23.
3
Nano-flares for mRNA regulation and detection.
ACS Nano. 2009 Aug 25;3(8):2147-52. doi: 10.1021/nn9003814.
4
Polymeric nanomedicine for cancer MR imaging and drug delivery.
Chem Commun (Camb). 2009 Jun 28(24):3497-510. doi: 10.1039/b821865j. Epub 2009 Mar 10.
5
Tumor imaging and therapy using radiolabeled somatostatin analogues.
Acc Chem Res. 2009 Jul 21;42(7):873-80. doi: 10.1021/ar800188e.
6
Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots.
Langmuir. 2009 Mar 3;25(5):3040-4. doi: 10.1021/la8035083.
10
Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect.
Curr Drug Discov Technol. 2009 Mar;6(1):43-51. doi: 10.2174/157016309787581066.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验