Suppr超能文献

等离子体纳米气泡对组织的选择性和自主微消融。

Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles.

机构信息

Joint American-Belarusian Laboratory for Fundamental and Biomedical Nanophotonics, Rice University, Houston, Texas 77005, USA.

出版信息

J Surg Res. 2011 Mar;166(1):e3-13. doi: 10.1016/j.jss.2010.10.039. Epub 2010 Nov 26.

Abstract

BACKGROUND

The accuracy, selectivity, and safety of surgical and laser methods for tissue elimination are often limited at microscale.

MATERIALS AND METHODS

We developed a novel agent, the plasmonic nanobubble (PNB), for optically guided selective elimination of the target tissue with micrometer precision. PNBs were tested in vitro in the two different models of superficial tumors and vascular plaques.

RESULTS

PNBs were selectively generated around gold nanoparticles (delivered to the target tissues) with short laser pulses. Monolayers of cancerous cells and atherosclerotic plaque tissue were eliminated with PNBs with micrometer accuracy and without thermal and mechanical damage to collateral normal tissues. The effect of the PNB was dynamically controlled through the fluence of laser pulses (532 nm, duration 0.5 and 10 ns) and was guided through the optical scattering by PNB.

CONCLUSIONS

Plasmonic nanobubbles were shown to provide precise, tunable, selective, and guided ablation of tissue at a microscopic level and could be employed as a new generation of surgical tools.

摘要

背景

手术和激光方法在消除组织时的准确性、选择性和安全性在微尺度上往往受到限制。

材料与方法

我们开发了一种新型试剂,即等离子体纳米泡(PNB),用于通过光引导以微米级精度选择性地消除目标组织。在两种不同的浅层肿瘤和血管斑块模型中对 PNB 进行了体外测试。

结果

通过短激光脉冲可在金纳米颗粒(递送至靶组织)周围选择性地产生 PNB。用 PNB 以微米级精度消除单层癌细胞和动脉粥样硬化斑块组织,而不会对相邻正常组织造成热和机械损伤。通过激光脉冲的能量(532nm,持续时间为 0.5 和 10ns)动态控制 PNB 的效果,并通过 PNB 的光散射进行引导。

结论

等离子体纳米泡可在微观水平上提供精确、可调、选择性和引导性的组织消融,可作为新一代手术工具。

相似文献

1
Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles.
J Surg Res. 2011 Mar;166(1):e3-13. doi: 10.1016/j.jss.2010.10.039. Epub 2010 Nov 26.
3
Tunable plasmonic nanobubbles for cell theranostics.
Nanotechnology. 2010 Feb 26;21(8):85102. doi: 10.1088/0957-4484/21/8/085102. Epub 2010 Jan 25.
4
The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts.
Biomaterials. 2010 Oct;31(29):7567-74. doi: 10.1016/j.biomaterials.2010.06.031. Epub 2010 Jul 14.
5
Generation and detection of plasmonic nanobubbles in zebrafish.
Nanotechnology. 2010 Jun 4;21(22):225102. doi: 10.1088/0957-4484/21/22/225102. Epub 2010 May 7.
6
Transient photothermal spectra of plasmonic nanobubbles.
Langmuir. 2012 Mar 13;28(10):4858-66. doi: 10.1021/la205132x. Epub 2012 Feb 28.
7
Laser pulse duration is critical for the generation of plasmonic nanobubbles.
Langmuir. 2014 Jul 1;30(25):7425-34. doi: 10.1021/la5015362. Epub 2014 Jun 20.
8
Optically guided controlled release from liposomes with tunable plasmonic nanobubbles.
J Control Release. 2010 Jun 1;144(2):151-8. doi: 10.1016/j.jconrel.2010.02.012. Epub 2010 Feb 13.
9
Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles.
Nat Nanotechnol. 2016 Jun;11(6):525-532. doi: 10.1038/nnano.2015.343. Epub 2016 Feb 15.
10
Tunable plasmonic nanoprobes for theranostics of prostate cancer.
Theranostics. 2011 Jan 10;1:3-17. doi: 10.7150/thno/v01p0003.

引用本文的文献

1
A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties.
Adv Pharm Bull. 2024 Jul;14(2):278-301. doi: 10.34172/apb.2024.042. Epub 2024 Mar 17.
2
Hydrophobically Modified Silica-Coated Gold Nanorods for Generating Nonlinear Photoacoustic Signals.
ACS Appl Nano Mater. 2021 Nov 26;4(11):12073-12082. doi: 10.1021/acsanm.1c02623. Epub 2021 Nov 11.
3
Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to Qβ Virus-like Particles.
ACS Nano. 2023 Apr 25;17(8):7797-7805. doi: 10.1021/acsnano.3c00638. Epub 2023 Mar 8.
6
Retraction: Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems.
PLoS One. 2017 Nov 2;12(11):e0187820. doi: 10.1371/journal.pone.0187820. eCollection 2017.
10
All-in-one processing of heterogeneous human cell grafts for gene and cell therapy.
Mol Ther Methods Clin Dev. 2016 Mar 16;3:16012. doi: 10.1038/mtm.2016.12. eCollection 2016.

本文引用的文献

1
Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles.
Radiology. 2010 Sep;256(3):774-82. doi: 10.1148/radiol.10092473. Epub 2010 Jul 28.
2
The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts.
Biomaterials. 2010 Oct;31(29):7567-74. doi: 10.1016/j.biomaterials.2010.06.031. Epub 2010 Jul 14.
3
Generation and detection of plasmonic nanobubbles in zebrafish.
Nanotechnology. 2010 Jun 4;21(22):225102. doi: 10.1088/0957-4484/21/22/225102. Epub 2010 May 7.
5
Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging.
Methods Mol Biol. 2010;624:177-93. doi: 10.1007/978-1-60761-609-2_12.
6
Optically guided controlled release from liposomes with tunable plasmonic nanobubbles.
J Control Release. 2010 Jun 1;144(2):151-8. doi: 10.1016/j.jconrel.2010.02.012. Epub 2010 Feb 13.
7
Tunable plasmonic nanobubbles for cell theranostics.
Nanotechnology. 2010 Feb 26;21(8):85102. doi: 10.1088/0957-4484/21/8/085102. Epub 2010 Jan 25.
8
Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications.
Nanomedicine (Lond). 2009 Oct;4(7):813-45. doi: 10.2217/nnm.09.59.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验