Suppr超能文献

监测相关传染病:以结核病和艾滋病为例。

Monitoring linked epidemics: the case of tuberculosis and HIV.

机构信息

Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America.

出版信息

PLoS One. 2010 Jan 20;5(1):e8796. doi: 10.1371/journal.pone.0008796.

Abstract

BACKGROUND

The tight epidemiological coupling between HIV and its associated opportunistic infections leads to challenges and opportunities for disease surveillance.

METHODOLOGY/PRINCIPAL FINDINGS: We review efforts of WHO and collaborating agencies to track and fight the TB/HIV co-epidemic, and discuss modeling--via mathematical, statistical, and computational approaches--as a means to identify disease indicators designed to integrate data from linked diseases in order to characterize how co-epidemics change in time and space. We present R(TB/HIV), an index comparing changes in TB incidence relative to HIV prevalence, and use it to identify those sub-Saharan African countries with outlier TB/HIV dynamics. R(TB/HIV) can also be used to predict epidemiological trends, investigate the coherency of reported trends, and cross-check the anticipated impact of public health interventions. Identifying the cause(s) responsible for anomalous R(TB/HIV) values can reveal information crucial to the management of public health.

CONCLUSIONS/SIGNIFICANCE: We frame our suggestions for integrating and analyzing co-epidemic data within the context of global disease monitoring. Used routinely, joint disease indicators such as R(TB/HIV) could greatly enhance the monitoring and evaluation of public health programs.

摘要

背景

HIV 及其相关机会性感染的紧密流行病学关联给疾病监测带来了挑战和机遇。

方法/主要发现:我们回顾了世界卫生组织和合作机构为追踪和抗击结核病/艾滋病合并流行所做的努力,并讨论了通过数学、统计和计算方法建模,作为一种识别旨在整合相关疾病数据的疾病指标的手段,以描述合并流行如何随时间和空间而变化。我们提出了 R(TB/HIV),这是一个比较结核病发病率相对于 HIV 流行率变化的指数,并利用它来确定撒哈拉以南非洲国家中结核病/艾滋病动态的异常情况。R(TB/HIV)也可用于预测流行病学趋势、调查报告趋势的一致性,并交叉检查公共卫生干预措施的预期影响。确定导致异常 R(TB/HIV)值的原因,可以揭示对公共卫生管理至关重要的信息。

结论/意义:我们将整合和分析合并流行数据的建议置于全球疾病监测的背景下。常规使用联合疾病指标,如 R(TB/HIV),可以大大增强对公共卫生计划的监测和评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02c/2808389/f1c113d3633b/pone.0008796.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验