Suppr超能文献

使用差分迁移谱技术对慢性阻塞性肺疾病患者和健康吸烟者的呼出气进行无创代谢组学分析。

Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers.

机构信息

Respiratory Research Group, Manchester Academic Health Science Centre, University of Manchester, Wythenshawe Hospital, Manchester, UK.

出版信息

Analyst. 2010 Feb;135(2):315-20. doi: 10.1039/b916374c. Epub 2010 Jan 5.

Abstract

The rapid, accurate and non-invasive diagnosis of respiratory disease represents a challenge to clinicians, and the development of new treatments can be confounded by insufficient knowledge of lung disease phenotypes. Exhaled breath contains a complex mixture of volatile organic compounds (VOCs), some of which could potentially represent biomarkers for lung diseases. We have developed an adaptive sampling methodology for collecting concentrated samples of exhaled air from participants with impaired respiratory function, against which we employed two-stage thermal desorption gas chromatography-differential mobility spectrometry (GC-DMS) analysis, and showed that it was possible to discriminate between participants with and without chronic obstructive pulmonary disease (COPD). A 2.5 dm(3) volume of end tidal breath was collected onto adsorbent traps (Tenax TA/Carbotrap), from participants with severe COPD and healthy volunteers. Samples were thermally desorbed and analysed by GC-DMS, and the chromatograms analysed by univariate and multivariate analyses. Kruskal-Wallis ANOVA indicated several discriminatory (p < 0.01) signals, with good classification performance (receiver operator characteristic area up to 0.82). Partial least squares discriminant analysis using the full DMS chromatograms also gave excellent discrimination between groups (alpha = 19% and beta = 12.4%).

摘要

快速、准确、无创的呼吸疾病诊断对临床医生来说是一个挑战,而对肺部疾病表型的了解不足可能会阻碍新疗法的发展。呼气中含有复杂的挥发性有机化合物 (VOC) 混合物,其中一些可能代表肺部疾病的生物标志物。我们开发了一种适应性采样方法,用于从呼吸功能受损的参与者中采集浓缩的呼气样本,我们采用了两步热解吸气相色谱-差分迁移率谱 (GC-DMS) 分析,结果表明,区分慢性阻塞性肺疾病 (COPD) 患者和非 COPD 患者是可能的。从严重 COPD 患者和健康志愿者采集 2.5 dm(3)体积的呼末呼吸到吸附剂阱(Tenax TA/Carbotrap)中。对样品进行热解吸和 GC-DMS 分析,并通过单变量和多变量分析对色谱图进行分析。Kruskal-Wallis ANOVA 表明有几个具有区分性的(p < 0.01)信号,具有良好的分类性能(接收者操作特征区高达 0.82)。使用完整 DMS 色谱图的偏最小二乘判别分析也能很好地区分组(alpha = 19%和 beta = 12.4%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验