Suppr超能文献

印度小家鼠中两个β-珠蛋白基因座多态性的进化和功能特性。

Evolutionary and functional properties of a two-locus beta-globin polymorphism in Indian house mice.

机构信息

School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA.

出版信息

Genetics. 2010 Apr;184(4):1121-31. doi: 10.1534/genetics.109.113506. Epub 2010 Jan 25.

Abstract

Electrophoretic surveys of hemoglobin (Hb) polymorphism in house mice from South Asia and the Middle East have revealed that two alternative beta-globin haplotypes, Hbb(d) and Hbb(p), are often present at intermediate frequencies in geographically disparate populations. Both haplotypes harbor two functionally distinct beta-globin paralogs, HBB-T1 (which encodes the beta-chain subunits of the major Hb isoform) and HBB-T2 (which encodes the beta-chains of the minor Hb isoform). The Hbb(d) and Hbb(p) haplotypes share identical HBB-T1 alleles, but products of the alternative HBB-T2 alleles (d(minor) and p(minor)) are distinguished by two amino acid substitutions. To investigate the possible adaptive significance of the Hbb(d)/Hbb(p) polymorphism we conducted a population genetic analysis of the duplicated beta-globin genes of Indian house mice (Mus castaneus) in conjunction with experimental studies of Hb function in inbred strains of mice that carry the alternative Hbb(d) and Hbb(p) haplotypes. The main objectives of this study were (i) to characterize patterns of nucleotide polymorphism and linkage disequilibrium in the duplicated beta-globin genes of M. castaneus, (ii) to test the hypothesis that the Hbb(d) and Hbb(p) haplotypes are maintained as a balanced polymorphism, and (iii) to assess whether allelic differences in the alternative minor Hb isoforms (d(minor) and p(minor)) are associated with different O(2)-binding properties. A multilocus analysis of polymorphism and divergence revealed that levels of diversity at the HBB-T2 gene exceeded neutral expectations, and reconstructed haplotype networks for both beta-globin paralogs revealed extensive allele sharing with several other closely related species of Mus. However, despite this suggestive evidence for balancing selection, O(2)-equilibrium curves revealed no discernible functional differences between red cell lysates containing the d(minor) and p(minor) Hb isoforms. If the d(minor) and p(minor) alleles are maintained as a balanced polymorphism, our results indicate that the associated fitness variance is not directly related to respiratory functions of Hb.

摘要

电泳调查血红蛋白(Hb)多态性在南亚和中东的家鼠表明,两个替代的β-珠蛋白基因座,Hbb(d)和 Hbb(p),经常在地理上不同的种群中以中等频率存在。这两个基因座都携带有两个功能不同的β-珠蛋白基因座,HBB-T1(编码主要 Hb 同工型的β-链亚基)和 HBB-T2(编码次要 Hb 同工型的β-链)。Hbb(d)和 Hbb(p)基因座共享相同的 HBB-T1 等位基因,但替代 HBB-T2 等位基因(d(次要)和 p(次要))的产物通过两个氨基酸取代来区分。为了研究 Hbb(d)/Hbb(p)多态性的可能适应性意义,我们对携带替代 Hbb(d)和 Hbb(p)基因座的近交系小鼠的 Hb 功能进行了实验研究,同时对印度家鼠(Mus castaneus)的重复β-珠蛋白基因进行了群体遗传分析。本研究的主要目的是:(i)描述 M. castaneus 重复β-珠蛋白基因的核苷酸多态性和连锁不平衡模式;(ii)检验 Hbb(d)和 Hbb(p)基因座作为平衡多态性的假说;(iii)评估替代的次要 Hb 同工型(d(次要)和 p(次要))的等位基因差异是否与不同的 O2-结合特性相关。多基因座的多态性和分歧分析表明,HBB-T2 基因的多样性水平超过了中性预期,对两个β-珠蛋白基因座的重组单倍型网络分析表明,与其他几种密切相关的 Mus 物种有广泛的等位基因共享。然而,尽管有平衡选择的迹象,但 O2-平衡曲线并没有揭示红细胞裂解物中包含的 d(次要)和 p(次要)Hb 同工型之间存在明显的功能差异。如果 d(次要)和 p(次要)等位基因作为平衡多态性被维持,我们的结果表明,相关的适应度方差与 Hb 的呼吸功能没有直接关系。

相似文献

1
Evolutionary and functional properties of a two-locus beta-globin polymorphism in Indian house mice.
Genetics. 2010 Apr;184(4):1121-31. doi: 10.1534/genetics.109.113506. Epub 2010 Jan 25.
2
Evolution of duplicated beta-globin genes and the structural basis of hemoglobin isoform differentiation in Mus.
Mol Biol Evol. 2009 Nov;26(11):2521-32. doi: 10.1093/molbev/msp165. Epub 2009 Aug 12.
3
Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14450-5. doi: 10.1073/pnas.0905224106. Epub 2009 Aug 10.
4
Complex signatures of selection and gene conversion in the duplicated globin genes of house mice.
Genetics. 2007 Sep;177(1):481-500. doi: 10.1534/genetics.107.078550. Epub 2007 Jul 29.
5
Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content.
Comp Biochem Physiol A Mol Integr Physiol. 2012 Feb;161(2):265-70. doi: 10.1016/j.cbpa.2011.11.004. Epub 2011 Nov 16.
6
Altitudinal variation at duplicated β-globin genes in deer mice: effects of selection, recombination, and gene conversion.
Genetics. 2012 Jan;190(1):203-16. doi: 10.1534/genetics.111.134494. Epub 2011 Oct 31.
8
Association between Different Polymorphic Markers and β-Thalassemia Intermedia in Central Iran.
Hemoglobin. 2020 Jan;44(1):27-30. doi: 10.1080/03630269.2019.1709204. Epub 2020 Jan 3.
9
A Clinical Update of the Hb Siirt [β27(B9)Ala→Gly; HBB: c.83C>G] Hemoglobin Variant.
Hemoglobin. 2017 Jan;41(1):53-55. doi: 10.1080/03630269.2017.1302469. Epub 2017 Apr 10.

引用本文的文献

3
Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau.
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1865-1870. doi: 10.1073/pnas.1720487115. Epub 2018 Feb 5.
4
Gene Turnover and Diversification of the α- and β-Globin Gene Families in Sauropsid Vertebrates.
Genome Biol Evol. 2018 Jan 1;10(1):344-358. doi: 10.1093/gbe/evy001.
5
Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?
J Exp Biol. 2016 Oct 15;219(Pt 20):3190-3203. doi: 10.1242/jeb.127134.
6
Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation.
Adv Exp Med Biol. 2016;903:113-28. doi: 10.1007/978-1-4899-7678-9_8.
7
Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport.
Physiology (Bethesda). 2016 May;31(3):223-32. doi: 10.1152/physiol.00060.2015.
8
Genetic approaches in comparative and evolutionary physiology.
Am J Physiol Regul Integr Comp Physiol. 2015 Aug 1;309(3):R197-214. doi: 10.1152/ajpregu.00100.2015. Epub 2015 Jun 3.
10
Epistasis constrains mutational pathways of hemoglobin adaptation in high-altitude pikas.
Mol Biol Evol. 2015 Feb;32(2):287-98. doi: 10.1093/molbev/msu311. Epub 2014 Nov 18.

本文引用的文献

1
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
2
PROTEIN POLYMORPHISM AND GENIC HETEROZYGOSITY IN TWO EUROPEAN SUBSPECIES OF THE HOUSE MOUSE.
Evolution. 1969 Sep;23(3):379-390. doi: 10.1111/j.1558-5646.1969.tb03522.x.
3
STUDIES OF NATURAL POPULATIONS OF MUS. I. BIOCHEMICAL POLYMORPHISMS AND THEIR BEARING ON BREEDING STRUCTURE.
Evolution. 1967 Jun;21(2):259-274. doi: 10.1111/j.1558-5646.1967.tb00154.x.
4
The variable genomic architecture of isolation between hybridizing species of house mice.
Evolution. 2010 Feb 1;64(2):472-85. doi: 10.1111/j.1558-5646.2009.00846.x. Epub 2009 Sep 30.
5
Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15454-9. doi: 10.1073/pnas.0813216106. Epub 2009 Aug 26.
6
Evolution of duplicated beta-globin genes and the structural basis of hemoglobin isoform differentiation in Mus.
Mol Biol Evol. 2009 Nov;26(11):2521-32. doi: 10.1093/molbev/msp165. Epub 2009 Aug 12.
7
Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14450-5. doi: 10.1073/pnas.0905224106. Epub 2009 Aug 10.
8
Neurons express hemoglobin alpha- and beta-chains in rat and human brains.
J Comp Neurol. 2009 Aug 10;515(5):538-47. doi: 10.1002/cne.22062.
9
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.
Bioinformatics. 2009 Jun 1;25(11):1451-2. doi: 10.1093/bioinformatics/btp187. Epub 2009 Apr 3.
10
Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes.
Mol Ecol. 2008 Dec;17(24):5349-63. doi: 10.1111/j.1365-294X.2008.04005.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验